

CS151: Introduction to Artificial Intelligence

Intro to AI & Intro to Python

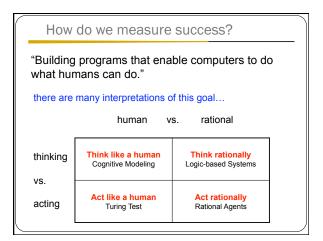
CS151
David Kauchak
Fall 2010

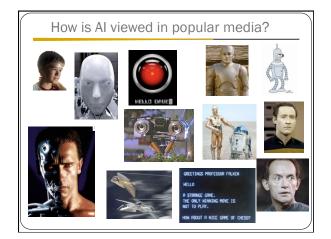
Adapted from notes from:
Sara Owsley Sood

Who are you and why are you here?

- Name/nickname
- Dept., college and year
- What is AI? (or what do you think AI is? ⁽²⁾)
- Why are you taking this course?
 - What topics would you like to see covered?

Course goals


- Be able to answer the question "What is AI"?
- Learn and apply basic AI techniques...
- ...to solve real-world (current) problems, and in the process...
- ...appreciate how HARD AI really is (and why)


Al is a huge field

- So, what is AI...
- One definition:

"Building programs that enable computers to do what humans can do."

• for example: read, walk around, drive, play games, solve problems, learn, have conversations...

What challenges are there?

- Perception
 - perceive the environment via sensors
- Computer vision (perception via images/video)
 - process visual information
 - object identification, face recognition, motion tracking
- Natural language processing and generation
 - speech recognition, language understanding
 - language translation, speech generation, summarization

What challenges are there?

- Knowledge representation
- encode known information
- water is wet, the sun is hot, Dave is a person, ...
- Learning
 - learn from environment
 - supervised vs. unsupervised
- Reasoning/problem solving
- achieve goals, solve problems
- planning
- How do you make an omelette? I'm carrying an umbrella and it's raining... will I get wet?
- - Wow can computers interact with the physical world?

What can we currently do?

- Understand spoken language?
 - speech recognition is pretty good, if:
 - restricted vocabulary
 - specific speaker with training
 - still working on the general problem (GOOG-411, Google phone)
- What does the spoken language actually mean (language understanding)?
 - much harder problem!
 - many advances in NLP in small things, but still far away from a general solution

What can we currently do?

- Speak?
 - Understandable, but you wouldn't confuse it for a
 - Better with restricted vocabulary
 - Loquendo
 - http://tts.loquendo.com/ttsdemo/default.asp

• Dealing with facial expression is challenging

Kismet (MIT)

What can we currently do?

- Drive a car?
 - Freeway driving is relatively straightforward
 - Off-road a bit harder
 - see DARPA grand challenges (2004, 2005)

- And urban driving is even trickier
- See DARPA urban challenge (2007)

What can we currently do?

- Identify emotion?
 - This is hard!
 - Some success in text
 - movie reviews
 - blogs
 - twitter
 - dealing with sarcasm is hard
 - Some success with faces
 - strongly biased by training data
 - works best when exaggerated

What can we currently do?

- Reasoning?
 - Success on small sub-problems

- General purpose reasoning is harder
 - Wolfram Alpha
 - OpenCyc

What can we currently do?

- Walk?
- Robots have had a variety of locomotion methods
- Walking with legs, is challenging
 - Differing terrains, stairs, running, ramps, etc.
 - Recently, a number of successes
 - Honda's Asimo
 - http://www.youtube.com/watch?v=W1czBcnX1Ww
 - Sony QRIO
 - http://www.youtube.com/watch?v=9vwZ5FQEUFg
 - Boston Dynamic's Big Dog
 - http://www.youtube.com/watch?v=W1czBcnX1Wv

When will I have my robot helper?

What can we currently do?

• Vacuum? Clean the floor? Mow the lawn?

What can we currently do?

• Fold a pile of towels?

UC Berkeley towel folding robot:

http://www.youtube.com/watch?v=gy5g33S0Gzo

Administrivia

- http://www.cs.pomona.edu/classes/cs151/
 - Office hours, schedule, assigned readings, problem sets
 - Everything will be posted here
- Read the "administrivia" handout!
 - ~4 programming assignments (in Python)
 - ungraded written assignments • 2 exams (dates are tentative)

 - teams of 2-3 people
 research-like with write-up and presentation
 - class participation
 - readings
- Academic honesty and collaboration

Python basics

More python fun

```
>>> x[0] ##treat a string as a list
'h'
>>> x[0:4] ##substring of a string is a sublist - slices
'hi t'
>>> x[-1]
'e'
>>> x[-3:]
'ere'
>>> myL = [2]*5 ##can do powerful things
>>> myL ##what do you think this will do?
[2, 2, 2, 2, 2]
>>> myL[2] = 0
>>> x = 1
>>> x = 1
>>> x = y
'hello'
>>> x
'hello'
>>> y
1
```

Defining functions

- look at 1-functions.py
 - def defines a new function
 - $\bullet\,$: indicates the beginning of a new block of text
 - no curly braces (for better or worse)
 - a block is indicated by it's indentation
 - DON'T MIX SPACES AND TABS
 - \bullet == for equality
- True and False
- External files
 - You can edit in your favorite text editor (for example Aquamacs)
 - When you're ready, you can import (i.e run all the commands in the file) using consells.

```
execfile ('example1.py')
>>> L = [1,2,3,4]
>>> listSearch(L, 5)
False
>>> listSearch(L, 1)
```

STDOUT and STDIN

- look at 1-10.py
 - print prints to the console (you can use it in functional form with () or without)
 - help(raw_input)
 - takes an optional prompt which is printed to the user
 - returns a string
 - we typecast it to an int using int()
 - can get a typecast error if user doesn't enter an int
 - notice that this is a script! The last line is the method call to the function

Defining classes

- look at polygon class in 1-classes.py
 - class <classname>: again, denotes a new block of code
 - self should be the first argument to any class method
 - It allows you to use the '.' notation for calling methods
 - It gives you a handle to the data associated with the current object
 When you call the method, you don't actually specify it
 - __init__ is similar to a constructor
 - p = polygon(...)
 - __str__ is similar to toString in Java and is called whenever an object is printed
 - \bullet we can define optional parameters using '=' in the parameter list
 - must be the last parameters in the list
 - if not specified, they get the default value
 - $\ ^{\circ}$ can specify using the name if desired

Defining classes

- look at box class in 1-classes.py
 - can define multiple classes in a file (and filename doesn't matter, remember these are just scripts. You could type these into the interpreter if you'd like)
 - \bullet isinstance function is similar to instance of in Java

dir and help!

provide all of the methods and data members available to an object

help(listSearch)

dir("foo")

help("foo".split)

dir(str)

help(str.split)

dir(42)
dir([])

No memorizing! Just use dir & help...