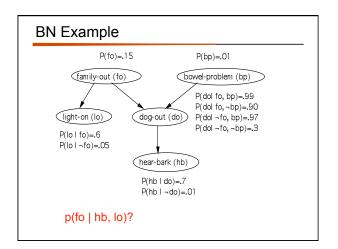


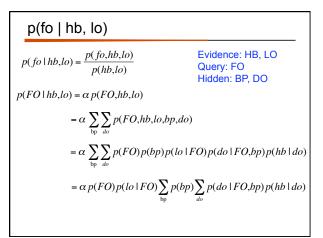
Admin

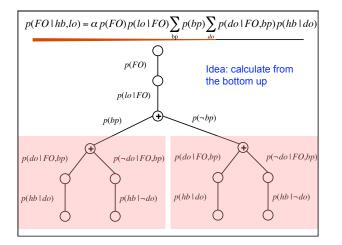
- Assignment 4 out
- Written 4 and 5
- Grading
- Midterm
- · TA office hours

Asking questions about distributions

- We want to be able to ask questions about these probability distributions
- Given *n* variables, a query splits the variables into three sets:
 - query variable(s)
 - known/evidence variables
 - unknown/hidden variables
- P(query | evidence)
 - if we had no hidden variables, we could just multiply all the values in the different CPTs
 - to answer this, we need to sum over the hiden variables!

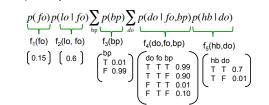


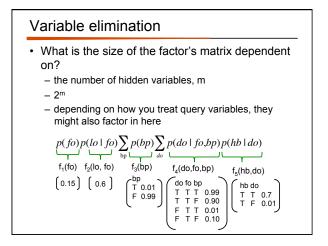




Variable elimination

- · Avoids repeated computation
- Break the calculation into *factors* each factor involves some (or all) of the variables
 - factors represent the values for the possible combinations of the variables
 - Initially, these values come straight from the conditional probability tables





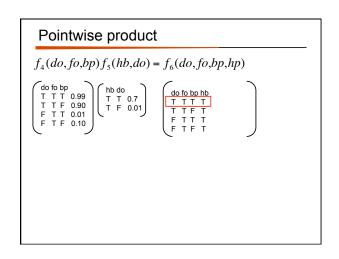
$$\begin{array}{c} f_1(fo)f_2(lo,fo)\sum_{bp} f_3(bp)\sum_{do} f_4(do,fo,bp)f_5(hb,do) \\ \left(\begin{array}{c} 0.15\end{array}\right) \left(\begin{array}{c} 0.6\end{array}\right) \left(\begin{array}{c} bp \\ T & 0.01 \\ F & 0.99\end{array}\right) \left(\begin{array}{c} do \ fo \ bp \\ T & T & T & 0.99 \\ T & T & F & 0.01 \\ F & T & F & 0.10\end{array}\right) \left(\begin{array}{c} hb \ do \\ T & T & 0.7 \\ T & F & 0.01\end{array}\right) \\ \end{array}$$

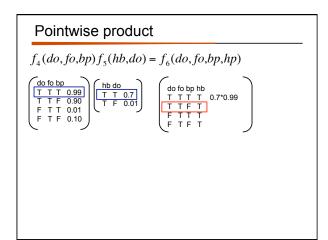
- Solve this from right to left using two operations:
 - pointwise product of factors
 - summing out a variable

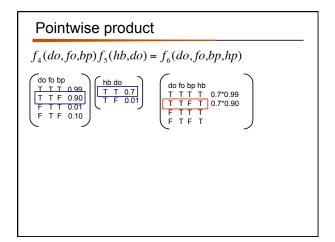
Pointwise product

$$\begin{split} f_1(x_1,...,x_n,y_1,...,y_m) f_2(y_1,...,y_n,z_1,...,z_p) &= \\ f_3(x_1,...,x_n,y_1,...,y_n,z_1,...,z_p) \end{split}$$

- When we take the product of two factors, we have three sets of variables
 - $-x_1, \dots, x_n$: those unique to f_1
 - $-z_1,...,z_p$: those unique to f_2
 - $-y_1, \dots, y_n$: those shared between the two
- The result is a *new* factor over the union of the variables

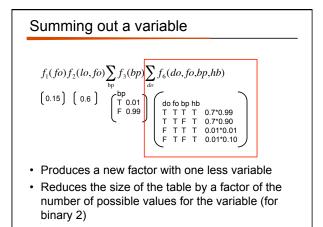


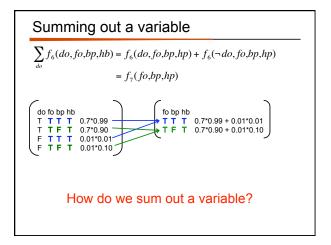




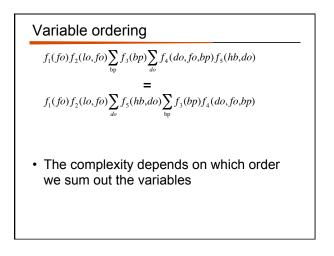
Pointwise product
$\overline{f_4(do, fo, bp)f_5(hb, do)} = f_6(do, fo, bp, hp)$
$ \begin{pmatrix} do \ fo \ bp \\ T \ T \ T \ 0.99 \\ F \ T \ F \ 0.01 \\ F \ T \ F \ 0.10 \end{pmatrix} \begin{pmatrix} hb \ do \\ T \ T \ 0.7 \\ T \ F \ 0.01 \\ \end{pmatrix} \begin{pmatrix} do \ fo \ bp \ hb \\ T \ T \ T \ 0.7^* 0.99 \\ T \ F \ T \ 0.7^* 0.90 \\ F \ T \ T \ 0.01^* 0.01 \\ F \ T \ F \ 0.01^* 0.01 \\ F \ T \ F \ T \ 0.01^* 0.01 \\ \end{pmatrix} $
In this case the size of the factor didn't increase, but in general, it can

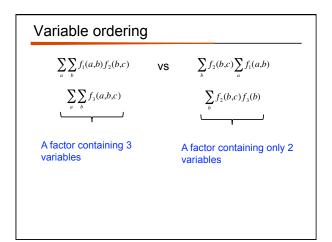
T T .3 T T .2 T T T	
	4,B,C)
TF.7 TF.8 TFF	0.06
	0.24
F T .9 F T .6 T F T	0.42
FF.IFF.4 TFF	0.28
F T T	D.18
F T F	0.72
F F T	0.06
F F F	0.04





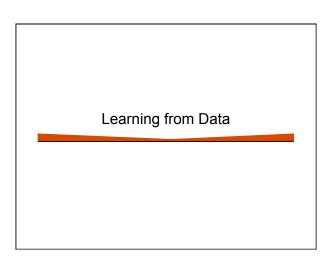
Variable Elimination
$f_1(fo)f_2(lo,fo)\sum_{i}f_3(bp)f_7(fo,bp,hb)$
$ \begin{array}{c} f_1(fo)f_2(lo,fo) \sum_{bp} f_3(bp)f_7(fo,bp,hb) \\ \left(\begin{array}{c} 0.15 \end{array} \right) \left(\begin{array}{c} 0.6 \end{array} \right) \\ \left(\begin{array}{c} {}^{bp} \\ {}^{T} \ 0.99 \end{array} \right) \left(\begin{array}{c} fo \ bp \ hb \\ {}^{T} \ T \ T \ 0.7^* 0.99 + 0.01^* 0.01 \\ {}^{T} \ F \ T \ 0.7^* 0.90 + 0.01^* 0.10 \end{array} \right) \end{array} $
$f_1(fo)f_2(lo,fo)\sum_{bp}f_8(fo,bp,hb)$ product
$f_1(fo)f_2(lo,fo)f_9(fo,hb)$ sum
÷

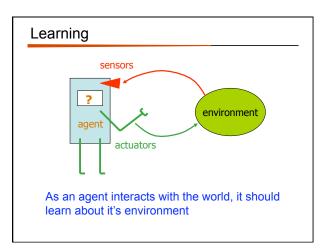


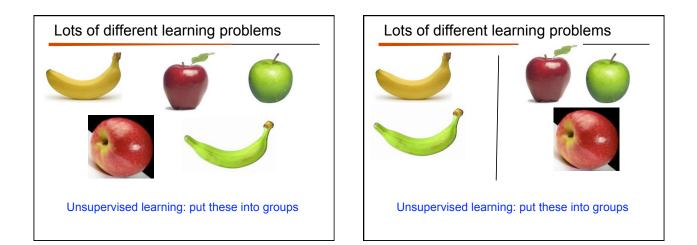


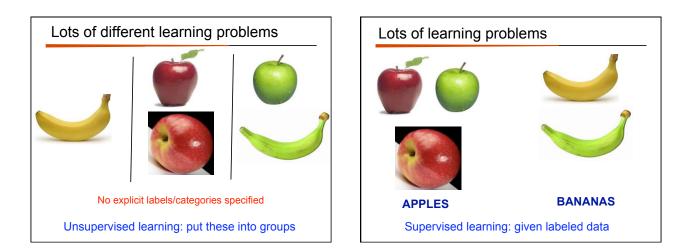
Runtime

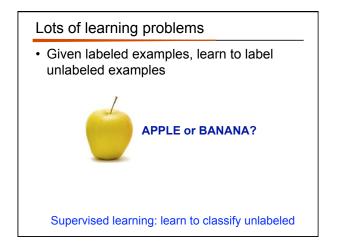
- In general, the run-time of the variable elimination algorithm is dependent on the largest factor created
- Figuring out the optimal variable ordering is intractable
- Some heuristics have been used – pick the merger greedily











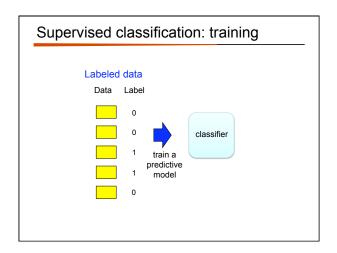
Lots of learning problems

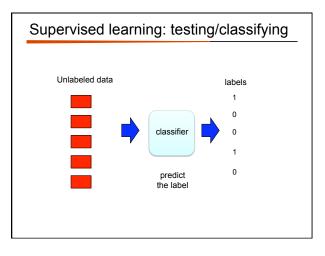
· Many others

- semi-supervised learning: some labeled data and some unlabeled data
- active learning: unlabeled data, but we can pick some examples to be labeled
- reinforcement learning: maximize a *cumulative* reward. Learn to drive a car, reward = not crashing

· and variations

- online vs. offline learning: do we have access to all of the data or do we have to learn as we go
- classification vs. regression: are we predicting between a finite set or are we predicting a score/value

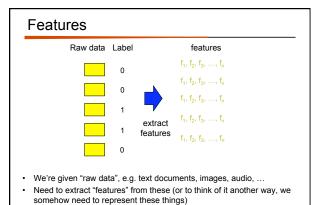




Some example

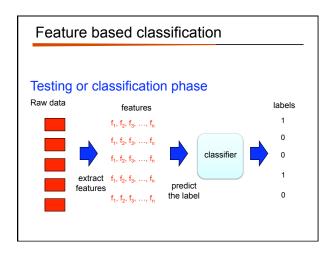
image classification

- does the image contain a person? apple? banana?
- text classification
 - is this a good/bad review?
 - is this article about sports or politics?
 - is this e-mail spam?
- character recognition
- is this set of scribbles an 'a', 'b', 'c', ...
- credit card transactions
 - fraud or not?
- audio classification
 - hit or not?
 - jazz, pop, blues, rap, …
 - jazz, pop, blues, rap,
- Tons of problems!!!



What might be features for: text, images, audio?

Feature based classification Training or learning phase Raw data Label features Label 0 0 0 0 f₁, f₂, f₃, ..., f_n 1 classifier 1 train a 1 extract predictive 1 features model 0 0



We represent a data item based on the features:

 $D = \left\langle f_1, f_2, \dots, f_n \right\rangle$

Training

a:
$$p(a | D) = p(a | f_1, f_2, ..., f_n)$$

b: $p(b | D) = p(b | f_1, f_2, ..., f_n)$

For each label/class, $\ensuremath{\textbf{label}}$ a probability distribution based on the features

Bayesian Classification

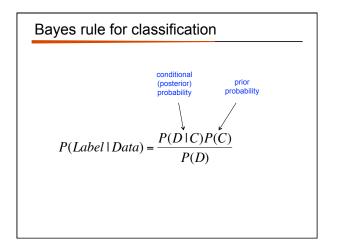
We represent a data item based on the features:

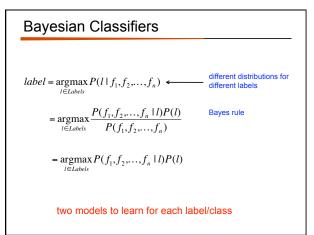
 $D = \left\langle f_1, f_2, \dots, f_n \right\rangle$

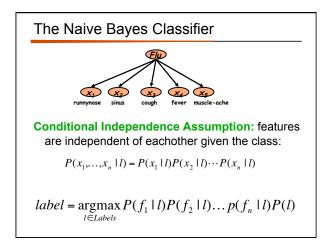
Classifying

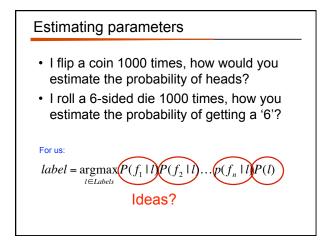
$$label = \underset{l \in Labels}{\operatorname{argmax}} P(l \mid f_1, f_2, \dots, f_n)$$

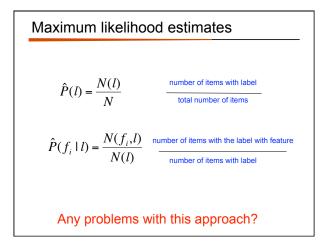
Given an *new* example, classify it as the label with the largest conditional probability

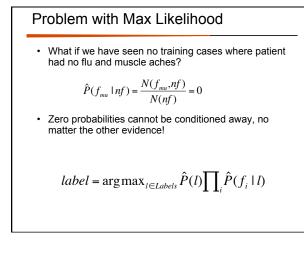


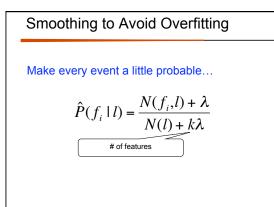


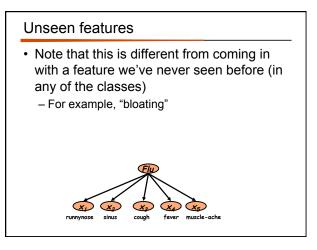












Naïve Bayes Text Classification

• Features: word occurring in a document (though others could be used...)

 $label = \underset{l \in Labels}{\operatorname{argmax}} P(word_1 \mid l) P(word_2 \mid l) \dots p(word_n \mid l) P(l)$

- Does the Naïve Bayes assumption hold?
 Are word occurrences independent given the label?
- We'll look at a few application for this homework – sentiment analysis: positive vs. negative reviews
 - category classifiction

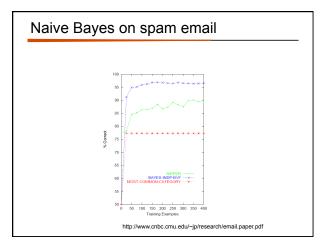
Classification evaluation?

- Accuracy
 - num correct / total
- Class specific measures
 - Precision
 - num correct with class A / num predicted class A
 - Recall
 - num correct with class A / num with class A
 - F1-measure
 - 2 * (precision * recall) / (precision + recall)
- · Why have these class specific measures?

WebKB Experiment (1998) Classify webpages from CS departments into: – student, faculty, course,project Train on ~5,000 hand-labeled web pages

- Train off ~5,000 frand-tabeled web pages
 Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU)

	d Notes for					
	Student	Faculty	Person	Project	Course	Departmt
Extracted	180	66	246	99	28	1
Correct	130	28	194	72	25	1
Accuracy:	72%	42%	79%	73%	89%	100%



SpamAssassin

- Naive Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 A mutant with more mutant offspring...
 - Naive Bayes-like classifier with weird parameter estimation
 - Widely used in spam filters
 - But also many other things: black hole lists, etc.
- Many email topic filters also use NB classifiers

NB: The good and the bad

- Good
 - Easy to understand
 - Fast to train
 - Reasonable performance
- Bad
 - We can do better
 - Independence assumptions are rarely true
 - Smoothing is challenging
 - Feature selection is usually required