
11/8/10

1

http://www.xkcd.com/816/

Neural Networks

David Kauchak

CS151

Fall 2010

Admin

 Pre-registration pizza
 Tuesday 5:30-6:30pm

 Edmunds lounge

 Assignment 5 due Wed. at midnight

Reviews
  Much improved from last time

  Some fun papers

  Technical correctness
  most of you mentioned the experiments/results section

  also comment on the correctness of the actual method
description

  citation:
 <authors>. <year>. <title>. <how_published>.

 be consistent and keep it simple

  look at the papers for examples

 don’t just copy it from citeseer!

11/8/10

2

What is this? How did you know?

293871947009

* √52.86301

/ 80.2341 = ?

What is the answer to this calculation?

293871947009

* √52.86301

/ 80.2341

= 26630240520.936812470902167425359

A computer can do this almost instantly!

Neural Networks
Neural Networks try to mimic the structure and
function of our nervous system

People like biologically motivated approaches (like genetic
algorithms)

11/8/10

3

Our Nervous System

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Neuron

Our nervous system: the
computer science view

  the human brain is a large
collection of interconnected
neurons

  a NEURON is a brain cell
  collect, process, and disseminate

electrical signals

  Neurons are connected via synapses

  They FIRE depending on the
conditions of the neighboring neurons

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Our nervous system

  The human brain
 contains ~1011 (100 billion)

neurons

 each neuron is connected
to ~104 (10,000) other
neurons

  What is this in CS language?

 Neurons can fire as fast as
10-3 seconds

How does this compare to a computer?

Man vs. Machine

109 transistors
1011 bits of ram
1013 bits on disk
10-9 cycle time

1011 neurons
1011 neurons
1014 synapses
10-3 “cycle” time

11/8/10

4

Brains are still pretty fast

Who is this?

Brains are still pretty fast

  If you were me, you’d be able to
identify this person in 10-1 s

  Given a neuron firing time of 10-3 s,
how many neurons in sequence
could fire in this time?
 A few hundred

  What are possible explanations?
 either neurons are performing some

very complicated computations

 brain is taking advantage of the
massive parallelization

W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

Weight w Node A Node B

(neuron) (neuron)

Neural Networks
Node (Neuron)

Edge (synapses)

our approximation

11/8/10

5

Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A Single Neuron/Perceptron

€

in = wi
i
∑ xi

€

∑

€

g(in)

threshold function

Possible threshold functions

  hard threshold
  if in (the sum of weights) >=

threshold 1, 0 otherwise

  Sigmoid

€

g(x) =
1

1+ e−ax

1

-1

1

0.5

A Single Neuron/Perceptron

?

Threshold of 1

1

1

0

1

1

-1

1

0.5

A Single Neuron/Perceptron

0

Threshold of 1

1

1

0

1

Weighted sum is
0.5, which is not
equal or larger
than the
threshold

11/8/10

6

Neural networks

 Different kinds/characteristics of networks

inputs

inputs inputs

How are these different?

Neural networks

inputs

inputs

Feed forward networks (we’ll
mostly deal with these)

hidden units/layer

Neural networks

  Recurrent network

  Output is fed back to input

  Can support memory!

  How?

inputs

History of Neural Networks

  McCulloch and Pitts (1943) – introduced model
of artificial neurons and suggested they could
learn

  Hebb (1949) – Simple updating rule for learning
  Rosenblatt (1962) - the perceptron model
  Minsky and Papert (1969) – wrote Perceptrons
  Bryson and Ho (1969, but largely ignored until

1980s) – invented back-propagation learning for
multilayer networks

11/8/10

7

Perceptron

  First wave in neural networks in the 1960’s

  Single neuron

  Trainable: its threshold and input weights can be
modified

  If the neuron doesn’t give the desired output,
then it has made a mistake.

  Input weights and threshold can be changed
according to a learning algorithm

Examples - Logical operators

 AND – if all inputs are 1, return 1,
otherwise return 0

 OR – if at least one input is 1, return 1,
otherwise return 0

 NOT – return the opposite of the input

 XOR – if exactly one input is 1, then return
1, otherwise return 0

AND

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

AND

11/8/10

8

T = 2 Output y

Input x1

Input x2

W1 = 1

W2 = 1

AND

Inputs are either 0 or 1

Output is 1 only if
all inputs are 1

T = ? Output y

Input x1

Input x2

Input x3

Input x4

W1 = ?

W2 = ?

W3 = ?

W4 = ?

AND

T = 4 Output y

Input x1

Input x2

Input x3

Input x4

W1 = 1

W2 = 1

W3 = 1

W4 = 1

AND

Inputs are either 0 or 1

Output is 1 only if
all inputs are 1

OR
x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

11/8/10

9

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

OR

T = 1 Output y

Input x1

Input x2

W1 = 1

W2 = 1

OR

Inputs are either 0 or 1

Output is 1 if at
least 1 input is 1

T = ? Output y

Input x1

Input x2

Input x3

Input x4

W1 = ?

W2 = ?

W3 = ?

W4 = ?

OR

T = 1 Output y

Input x1

Input x2

Input x3

Input x4

W1 = 1

W2 = 1

W3 = 1

W4 = 1

OR

Inputs are either 0 or 1

Output is 1 if at
least 1 input is 1

11/8/10

10

NOT

x1 not x1

0 1

1 0

T = ? Output y Input x1

W1 = ?

NOT

T = 0 Output y Input x1

W1 = -1

NOT

Input is either 0 or 1 If input is 1, output is 0.
If input is 0, output is 1.

How about…

x1 x2 x3 x1 and
x2

0 0 0 1

0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 0

T = ? Output y

Input x1

Input x3

w1 = ?

w3 = ?

Input x2

w2 = ?

11/8/10

11

Training neural nets

output: 1, -1

-  We’d like to train neural
networks
-  We can learn to classify
-  We can also learn a regression
function from input to a real
value

What are the parameters we
can modify/learn for the NN?

NN parameters

Learn the individual
weights between nodes

Learn individual
node parameters
(e.g. threshold)

An aside: linear regression

Given some points,
find the line that best
fits/explains the data

How can we find this line?

An aside: linear regression

Learn a line h that
minimizes an error function:

€

error(h) = (yi − h(xi))
2

i=1

n
∑

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

in the case of a 2d line:

function for
a line

11/8/10

12

Linear regression

 We’d like to minimize the error
 Find w1 and w0 such that the error is minimized

 How can we do this?

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

Linear regression

  Partial derivatives give us the slope in that dimension

  Option 1

  When slope is 0, it’s a min or a max

  This approach gets hard if we want to do non-linear regression

  Option 2: gradient descent
  move in the appropriate direction (but not necessarily down to 0)
  we can view the problem as a search for wi that minimizes the

loss

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑minimize:

Gradient descent
  If the loss function is convex, what does this

mean for our minimum?
  In three dimensions, think about a curved piece of

paper

 Or, think of it like skiing in a big bowl

  Approach:
 pick a starting point (w)

  repeat until loss doesn’t decrease in all dimensions:
  pick a dimension
  move a small amount in that dimension towards decreasing

loss (using the derivative)

Gradient descent

 pick a starting point (w)

  repeat until loss doesn’t decrease in all dimensions:
  pick a dimension

  move a small amount in that dimension towards decreasing
loss (using the derivative)

€

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to
move in the error direction)

11/8/10

13

Linear gradient descent

 pick a starting point (w)

  repeat until loss doesn’t decrease in all dimensions:
  pick a dimension

  move a small amount in that dimension towards decreasing
loss (using the derivative)

€

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

the value of the example in
that dimension

sum the error over
all the examples

difference between
actual and predicted

Back to training a perceptron

  We want to train a
perceptron to learn a
function given training
data

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1
T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

Threshold T Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

If w1x1 + w2x2 + … + wnxn ≥ T,

 then the output of n is 1.

Otherwise,

 the output of n is 0.

A Single Perceptron
Does this learning problem look
like anything we’ve seen?

Perceptron Training Rule

- pick a random weight
vector
- repeat until loss doesn’t
decrease in all dimensions:

- pick a dimension
- move a small amount in that
dimension towards decreasing
loss (using the derivative)

- pick a random weight
vector
- repeat until we correctly
classify all the points:

- pick an example
-  if we get it wrong:

-  modify the weights a small
amount

linear regression perceptron learning

Key difference: regression error vs. classification error

11/8/10

14

Perceptron Training Rule

- pick a random weight
vector
- repeat until loss doesn’t
decrease in all dimensions:

- pick a dimension
- move a small amount in that
dimension towards decreasing
loss (using the derivative)

- pick a random weight
vector
- repeat until we correctly
classify all the points:

- pick an example
-  if we get it wrong:

-  modify the weights a small
amount

linear regression perceptron learning

€

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

€

wi = wi −α xi (y j − h(x))

Modifying the weights

  Only update the weights when we get an
example wrong

€

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector:

how much this feature
played a role (e.g. active or
not)

learning rate

difference between
actual and predicted

Example: a simple problem
 4 points linearly separable

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5
-1

-0.5
0

0.5
1

1.5
2

(1/2, 1)

(1,1/2) (-1,1/2)

(-1,1)

11/8/10

15

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5
-1

-0.5
0

0.5
1

1.5
2 first correction

W(1) = (1/3,5/6)

Perceptron learning

 How does this compare to say the linear
SVM?

Perceptron learning

  Only works when data is linearly separable

  Voted perceptron helps get a better linear
separator

  Has remained popular as an approach for
learning weights in high dimensional space

  Other approaches for training perceptrons to
exist:
 Delta rule (Gradient Descent Approach)

 Linear Programming

11/8/10

16

XOR
x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

How would the perceptron do?

Linearly Separable

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Perceptrons

  1969 book by Marvin Minsky and Seymour
Papert

  The problem is that they can only work for
classification problems that are linearly
separable

  Insufficiently expressive
  “Important research problem” to investigate

multilayer networks although they were
pessimistic about their value

XOR
Input x1

Input x2

?

?

?

?

T = ?

T = ?

T = ?
?

?

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

Output = x1 xor x2

11/8/10

17

XOR
Input x1

Input x2

1

-1

-1

1

T = 1

T = 1

T = 1
1

1

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

Output = x1 xor x2

Logistic and other thresholds

  Only update the weights when we get an
example wrong

€

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector:

€

d
dwi

error(w)

Logistic and other thresholds

Any problem with using
the threshold function?

€

wi = wi −α d
dwi

error(w)

Logistic and other thresholds

We’ll use a sigmoid, which
approximates a threshold but has a
well defined derivative

€

wi = wi −α d
dwi

error(w)

€

wi = wi −α xi g'(w ⋅ x)(y - h(x))

Now have a term for
the slope at that point

11/8/10

18

Learning in Multilayer Networks

 Similar idea as perceptrons

 Examples are presented to the network

  If the network computes an output that
matches the desired, nothing is done

  If there is an error, then the weights are
adjusted to balance the error

Learning in multilayer networks
  Key idea for perceptron learning: if the perceptron’s

output is different than the expected output, update the
weights

  Challenge: for multilayer networks, we don’t know what
the expected output/error is for the internal nodes

perceptron multi-layer network

expected output?

Backpropagation

€

wi = wi −α g'(w ⋅ xi) (y - h(x)) x i

Say we get it wrong, and we now want to
update the weights

€

wi = wi −α g'(w ⋅ ai) (y - h(x)) ai

the inputs to the output node

Backpropagation
Say we get it wrong, and we now want to
update the weights

“back-propagate” the error:

Assume all of these nodes were
responsible for some of the error

How can we figure out how much they
were responsible for?

11/8/10

19

Backpropagation
Say we get it wrong, and we now want to
update the weights

error

w1

w2 w3

error for node i is: wi error

Backpropagation

€

wi = wi −α g'(w ⋅ x) (y - h(x)) x i

Say we get it wrong, and we now want to
update the weights

€

wi = wi −α g'(w ⋅ ai) error ai

the nodes fraction
of the error

Backpropagation

  calculate the error at the output layer

  backpropagate the error up the network
  if a node has multiple output nodes, sum the error of

these nodes

  Update the weights based on these errors

  Can be shown that this is the appropriate thing
to do based on our assumptions

  That said, many neuroscientists don’t think the
brain does backpropagation of errors

Neural network regression

 Given enough hidden nodes, you can
learn any function with a neural network

 Challenges:
 overfitting

 picking a network structure (like picking our
Bayes net structure)

 can require a lot of tweaking of parameters,
preprocessing, etc.

11/8/10

20

Popular for digit recognition and many computer vision tasks

http://yann.lecun.com/exdb/mnist/

Cog sci people like NNs

  Expression/emotion recognition
 Gary Cottrell et al

  Language learning

Interpreting Satellite Imagery for
Automated Weather Forecasting Summary

 Perceptrons, one layer networks, are
insufficiently expressive

 Multi-layer networks are sufficiently
expressive and can be trained by error
back-propogation

 Many applications including speech,
driving, hand written character recognition,
fraud detection, driving, etc.

