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http://www.xkcd.com/816/ 

Neural Networks 

David Kauchak 

CS151 

Fall 2010 

Admin 

 Pre-registration pizza 
 Tuesday 5:30-6:30pm 

 Edmunds lounge 

 Assignment 5 due Wed. at midnight 

Reviews 
  Much improved from last time 

  Some fun papers 

  Technical correctness 
  most of you mentioned the experiments/results section 

  also comment on the correctness of the actual method 
description 

  citation: 
 <authors>. <year>. <title>. <how_published>. 

 be consistent and keep it simple 

  look at the papers for examples 

 don’t just copy it from citeseer! 
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What is this?    How did you know? 

293871947009  

* √52.86301  

/ 80.2341 = ? 

What is the answer to this calculation? 

293871947009  

* √52.86301  

/ 80.2341 

= 26630240520.936812470902167425359 

A computer can do this almost instantly! 

Neural Networks 
Neural Networks try to mimic the structure and 
function of our nervous system 

People like biologically motivated approaches (like genetic 
algorithms) 
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Our Nervous System 
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Our nervous system: the 
computer science view 

  the human brain is a large 
collection of interconnected 
neurons 

  a NEURON is a brain cell 
  collect, process, and disseminate 

electrical signals 

  Neurons are connected via synapses 

  They FIRE depending on the 
conditions of the neighboring neurons 

Synapses

Axon

Dendrites

Synapses
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(weights)
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Our nervous system 

  The human brain 
 contains ~1011 (100 billion) 

neurons 

 each neuron is connected 
to ~104 (10,000) other 
neurons 

  What is this in CS language? 

 Neurons can fire as fast as 
10-3 seconds 

How does this compare to a computer? 

Man vs. Machine 

109 transistors 
1011 bits of ram 
1013 bits on disk 
10-9 cycle time 

1011 neurons 
1011 neurons 
1014 synapses 
10-3 “cycle” time 
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Brains are still pretty fast 

Who is this? 

Brains are still pretty fast 

  If you were me, you’d be able to 
identify this person in 10-1 s 

  Given a neuron firing time of 10-3 s, 
how many neurons in sequence 
could fire in this time? 
 A few hundred 

  What are possible explanations? 
 either neurons are performing some 

very complicated computations 

 brain is taking advantage of the 
massive parallelization 

W is the strength of signal sent between A and B. 

If A fires and w is positive, then A stimulates B. 

If A fires and w is negative, then A inhibits B. 

If a node is stimulated enough, then it also fires.   

How much stimulation is required is determined by its threshold. 

Weight w Node A Node B 

(neuron) (neuron) 

Neural Networks 
Node (Neuron) 

Edge (synapses) 

our approximation 
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Output y 

Input x1 

Input x2 

Input x3 

Input x4 

Weight w1 

Weight w2 

Weight w3 

Weight w4 

A Single Neuron/Perceptron 

€ 

in = wi
i
∑ xi

€ 

∑

€ 

g(in)

threshold function 

Possible threshold functions 

  hard threshold 
  if in (the sum of weights) >= 

threshold 1, 0 otherwise 

  Sigmoid 

€ 

g(x) =
1

1+ e−ax

1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

? 

Threshold of 1 

1 

1 

0 

1 

1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

0 

Threshold of 1 

1 

1 

0 

1 

Weighted sum is 
0.5, which is not 
equal or larger 
than the 
threshold 
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Neural networks 

 Different kinds/characteristics of networks 

inputs 

inputs inputs 

How are these different? 

Neural networks 

inputs 

inputs 

Feed forward networks (we’ll 
mostly deal with these) 

hidden units/layer 

Neural networks 

  Recurrent network 

  Output is fed back to input 

  Can support memory! 

  How? 

inputs 

History of Neural Networks 

  McCulloch and Pitts (1943) – introduced model 
of artificial neurons and suggested they could 
learn 

  Hebb (1949) – Simple updating rule for learning 
  Rosenblatt (1962) - the perceptron model 
  Minsky and Papert (1969) – wrote Perceptrons  
  Bryson and Ho (1969, but largely ignored until 

1980s) – invented back-propagation learning for 
multilayer networks 
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Perceptron 

  First wave in neural networks in the 1960’s 

  Single neuron 

  Trainable: its threshold and input weights can be 
modified 

  If the neuron doesn’t give the desired output, 
then it has made a mistake. 

  Input weights and threshold can be changed 
according to a learning algorithm 

Examples - Logical operators   

 AND – if all inputs are 1, return 1, 
otherwise return 0 

 OR – if at least one input is 1, return 1, 
otherwise return 0 

 NOT – return the opposite of the input 

 XOR – if exactly one input is 1, then return 
1, otherwise return 0 

AND 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

AND 
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T = 2 Output y 

Input x1 

Input x2 

W1 = 1 

W2 = 1 

AND 

Inputs are either 0 or 1 

Output is 1 only if  
all inputs are 1 

T = ? Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = ? 

W2  = ? 

W3 = ? 

W4  = ? 

AND 

T = 4 Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = 1 

W2  = 1 

W3 = 1 

W4  = 1 

AND 

Inputs are either 0 or 1 

Output is 1 only if  
all inputs are 1 

OR 
x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

OR 

T = 1 Output y 

Input x1 

Input x2 

W1 = 1 

W2 = 1 

OR 

Inputs are either 0 or 1 

Output is 1 if at  
least 1 input is 1 

T = ? Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = ? 

W2  = ? 

W3 = ? 

W4  = ? 

OR 

T = 1 Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = 1 

W2  = 1 

W3 = 1 

W4  = 1 

OR 

Inputs are either 0 or 1 

Output is 1 if at  
least 1 input is 1 
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NOT 

x1 not x1 

0 1 

1 0 

T = ? Output y Input x1 

W1  = ? 

NOT 

T = 0 Output y Input x1 

W1  = -1 

NOT 

Input is either 0 or 1 If input is 1, output is 0. 
If input is 0, output is 1. 

How about… 

x1 x2 x3 x1 and 
x2 

0 0 0 1 

0 1 0 0 

1 0 0 1 

1 1 0 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 1 0 

T = ? Output y 

Input x1 

Input x3 

w1 = ? 

w3 = ? 

Input x2 

w2 = ? 
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Training neural nets 

output: 1, -1 

-  We’d like to train neural 
networks 
-  We can learn to classify 
-  We can also learn a regression 
function from input to a real 
value 

What are the parameters we 
can modify/learn for the NN? 

NN parameters 

Learn the individual 
weights between nodes 

Learn individual 
node parameters 
(e.g. threshold) 

An aside: linear regression 

Given some points, 
find the line that best 
fits/explains the data 

How can we find this line? 

An aside: linear regression 

Learn a line h that 
minimizes an error function: 

€ 

error(h) = (yi − h(xi))
2

i=1

n
∑

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

in the case of a 2d line: 

function for 
a line 
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Linear regression 

 We’d like to minimize the error 
 Find w1 and w0 such that the error is minimized 

 How can we do this? 

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

Linear regression 

  Partial derivatives give us the slope in that dimension 

  Option 1 

  When slope is 0, it’s a min or a max 

  This approach gets hard if we want to do non-linear regression 

  Option 2: gradient descent 
  move in the appropriate direction (but not necessarily down to 0) 
  we can view the problem as a search for wi that minimizes the 

loss 

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑minimize: 

Gradient descent 
  If the loss function is convex, what does this 

mean for our minimum? 
  In three dimensions, think about a curved piece of 

paper 

 Or, think of it like skiing in a big bowl 

  Approach: 
 pick a starting point (w) 

  repeat until loss doesn’t decrease in all dimensions: 
  pick a dimension 
  move a small amount in that dimension towards decreasing 

loss (using the derivative) 

Gradient descent 

 pick a starting point (w) 

  repeat until loss doesn’t decrease in all dimensions: 
  pick a dimension 

  move a small amount in that dimension towards decreasing 
loss (using the derivative) 

€ 

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to 
move in the error direction) 
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Linear gradient descent 

 pick a starting point (w) 

  repeat until loss doesn’t decrease in all dimensions: 
  pick a dimension 

  move a small amount in that dimension towards decreasing 
loss (using the derivative) 

€ 

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

the value of the example in 
that dimension 

sum the error over 
all the examples 

difference between 
actual and predicted 

Back to training a perceptron 

  We want to train a 
perceptron to learn a 
function given training 
data 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

Threshold T Output y 

Input x1 

Input x2 

Input x3 

Input x4 

Weight w1 

Weight w2 

Weight w3 

Weight w4 

If w1x1 + w2x2 + … + wnxn ≥ T,  

 then the output of n is 1. 

Otherwise,  

 the output of n is 0. 

A Single Perceptron 
Does this learning problem look 
like anything we’ve seen? 

Perceptron Training Rule 

- pick a random weight 
vector 
- repeat until loss doesn’t 
decrease in all dimensions: 

- pick a dimension 
- move a small amount in that 
dimension towards decreasing 
loss (using the derivative) 

- pick a random weight 
vector 
- repeat until we correctly 
classify all the points: 

- pick an example 
-  if we get it wrong: 

-  modify the weights a small 
amount  

linear regression perceptron learning 

Key difference: regression error vs. classification error 
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Perceptron Training Rule 

- pick a random weight 
vector 
- repeat until loss doesn’t 
decrease in all dimensions: 

- pick a dimension 
- move a small amount in that 
dimension towards decreasing 
loss (using the derivative) 

- pick a random weight 
vector 
- repeat until we correctly 
classify all the points: 

- pick an example 
-  if we get it wrong: 

-  modify the weights a small 
amount  

linear regression perceptron learning 

€ 

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

€ 

wi = wi −α xi (y j − h(x))

Modifying the weights 

  Only update the weights when we get an 
example wrong 

€ 

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector: 

how much this feature 
played a role (e.g. active or 
not) 

learning rate 

difference between 
actual and predicted 

Example: a simple problem 
   4 points linearly separable 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 
-1.5 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 

(1/2, 1)  

(1,1/2) (-1,1/2)  

(-1,1)  
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 
-1.5 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 first correction 

W(1) = (1/3,5/6)  

Perceptron learning 

 How does this compare to say the linear 
SVM? 

Perceptron learning 

  Only works when data is linearly separable 

  Voted perceptron helps get a better linear 
separator 

  Has remained popular as an approach for 
learning weights in high dimensional space 

  Other approaches for training perceptrons to 
exist: 
 Delta rule (Gradient Descent Approach) 

 Linear Programming 
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XOR 
x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

How would the perceptron do? 

Linearly Separable 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x1 

x2 

x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x1 

x2 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

x1 

x2 

Perceptrons 

  1969 book by Marvin Minsky and Seymour 
Papert 

  The problem is that they can only work for 
classification problems that are linearly 
separable 

  Insufficiently expressive 
  “Important research problem” to investigate 

multilayer networks although they were 
pessimistic about their value 

XOR 
Input x1 

Input x2 

?  

? 

?  

? 

T = ? 

T = ? 

T = ? 
? 

? 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Output = x1 xor x2 
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XOR 
Input x1 

Input x2 

1  

-1 

-1  

1 

T = 1 

T = 1 

T = 1 
1 

1 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Output = x1 xor x2 

Logistic and other thresholds 

  Only update the weights when we get an 
example wrong 

€ 

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector: 

€ 

d
dwi

error(w)

Logistic and other thresholds 

Any problem with using 
the threshold function? 

€ 

wi = wi −α d
dwi

error(w)

Logistic and other thresholds 

We’ll use a sigmoid, which 
approximates a threshold but has a 
well defined derivative 

€ 

wi = wi −α d
dwi

error(w)

€ 

wi = wi −α xi g'(w ⋅ x)(y - h(x))

Now have a term for 
the slope at that point 
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Learning in Multilayer Networks 

 Similar idea as perceptrons 

 Examples are presented to the network 

  If the network computes an output that 
matches the desired, nothing is done 

  If there is an error, then the weights are 
adjusted to balance the error 

Learning in multilayer networks 
  Key idea for perceptron learning: if the perceptron’s 

output is different than the expected output, update the 
weights 

  Challenge: for multilayer networks, we don’t know what 
the expected output/error is for the internal nodes 

perceptron multi-layer network 

expected output? 

Backpropagation 

€ 

wi = wi −α g'(w ⋅ xi) (y - h(x)) x i

Say we get it wrong, and we now want to 
update the weights 

€ 

wi = wi −α g'(w ⋅ ai) (y - h(x)) ai

the inputs to the output node 

Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

“back-propagate” the error: 

Assume all of these nodes were 
responsible for some of the error 

How can we figure out how much they 
were responsible for? 
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Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

error 

w1 

w2 w3 

error for node i is: wi error 

Backpropagation 

€ 

wi = wi −α g'(w ⋅ x) (y - h(x)) x i

Say we get it wrong, and we now want to 
update the weights 

€ 

wi = wi −α g'(w ⋅ ai) error ai

the nodes fraction 
of the error 

Backpropagation 

  calculate the error at the output layer 

  backpropagate the error up the network 
  if a node has multiple output nodes, sum the error of 

these nodes 

  Update the weights based on these errors 

  Can be shown that this is the appropriate thing 
to do based on our assumptions 

  That said, many neuroscientists don’t think the 
brain does backpropagation of errors 

Neural network regression 

 Given enough hidden nodes, you can 
learn any function with a neural network 

 Challenges: 
 overfitting 

 picking a network structure (like picking our 
Bayes net structure) 

 can require a lot of tweaking of parameters, 
preprocessing, etc. 
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Popular for digit recognition and many computer vision tasks 

http://yann.lecun.com/exdb/mnist/ 

Cog sci people like NNs 

  Expression/emotion recognition 
 Gary Cottrell et al 

  Language learning 

Interpreting Satellite Imagery for 
Automated Weather Forecasting Summary 

 Perceptrons, one layer networks, are 
insufficiently expressive 

 Multi-layer networks are sufficiently 
expressive and can be trained by error 
back-propogation 

 Many applications including speech, 
driving, hand written character recognition, 
fraud detection, driving, etc. 


