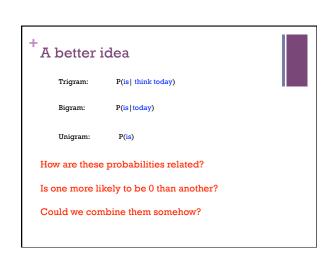


+ Smoothing: Add One (Laplacian)

Add one smoothing: $P(c \mid ab) \approx \frac{C(abc) + 1}{C(ab) + V}$ Works very badly. DO NOT DO THIS

Add delta smoothing: $P(c \mid ab) \approx \frac{C(abc) + \delta}{C(ab) + \delta V}$ Still very bad. DO NOT DO THIS



⁺Two general approaches

■ Interpolation

- $\blacksquare p^*(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) = \lambda \, p(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) + \mu \, p(\mathbf{z} \mid \mathbf{y}) + (1 \text{-} \, \lambda \, \text{-} \, \mu \,)_2 p(\mathbf{z})$
- Combine the probabilities with some linear combination

■ Backoff

$$P(z \mid xy) = \begin{cases} \frac{C^*(xyz)}{C(xy)} & \text{if } C(xyz) > 0\\ \alpha(xy)P(z \mid y) & \text{otherwise} \end{cases}$$

Combine the probabilities by "backing off" to lower models only when we don't have any information *Smoothing: Simple Interpolation

- $P(z\mid xy) \approx \lambda \frac{C(xyz)}{C(xy)} + \mu \frac{C(yz)}{C(y)} + (1-\lambda-\mu) \frac{C(z)}{C(\bullet)}$
- lacktriangle Trigram is very context specific, very noisy
- ■Unigram is context-independent, smooth
- ■Interpolate Trigram, Bigram, Unigram for best combination
- ■How should we determine λ and μ ?

Smoothing: Finding parameter values

- Split data into training, "heldout", test
- \blacksquare Try lots of different values for $\lambda,\,\mu$ on heldout data, pick best
- Two approaches for finding these efficiently
- EM (expectation maximization)
- "Powell search" see Numerical Recipes in C

+ Smoothing: Jelinek-Mercer

■ Simple interpolation:

$$P_{smooth}(z\mid xy) = \lambda \frac{C(xyz)}{C(xy)} + (1-\lambda)P_{smooth}(z\mid y)$$

■ Should all bigrams be smoothed equally?

"The Dow"	Search
About 4,370,000 results (0.11 seconds)	Advanced search
"A dalaa aaaad"	
"Adobe acquired"	Search

+ Smoothing: Jelinek-Mercer

■ Simple interpolation:

$$P_{smooth}(z \mid xy) = \lambda \frac{C(xyz)}{C(xy)} + (1 - \lambda)P_{smooth}(z \mid y)$$

■ Smooth a little after "The Dow", more after "Adobe acquired"

$$\begin{split} P_{smooth}(z\mid xy) &= \\ \lambda(C(xy)) \frac{C(xyz)}{C(xy)} + (1-\lambda(C(xy))P_{smooth}(z\mid y) \end{split}$$

Smoothing: Jelinek-Mercer continued

$$\begin{split} P_{smooth}(z\mid xy) &= \\ \lambda(C(xy)) \frac{C(xyz)}{C(xy)} + (1 - \lambda(C(xy)) P_{smooth}(z\mid y) \end{split}$$

- \blacksquare Bin counts by frequency and assign a λs for each bin
- lacktriangle Find λs by cross-validation on held-out data

*Backoff models: absolute discounting

- Subtract some absolute number from each of the counts (e.g. 0.75)
- will have a large effect on low counts
- will have a small effect on large counts

*Kneser-Ney

■ Idea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs P(stew | eggplant)

If we've never seen either, which should be more likely? why?

What would an interpolated/backoff model say?

What is the problem?

*Kneser-Ney

- Idea: not all counts should be discounted with the same value
- "Francisco" is common, so backoff/interpolated methods say it is likely
- But it only occurs in context of "San"
- $\hfill\blacksquare$ "Stew" is common, and in many contexts
- Weight backoff by number of contexts word occurs in

P(Francisco | eggplant) low P(stew | eggplant) higher

Smoothing

- Lots of other approaches...
- Good Turing: estimate unseen events based on 1-count events
- Katz, Witten-Bell,...
- In practice, Kneser-Ney works very well (or minor modifications of it)

⁺Other language model ideas?

- Skipping models: rather than just the previous 2 words, condition on the previous word and the 3rd word back,
- Caching models: phrases seen are more likely to be seen again (helps deal with new domains)
- Clustering:
- some words fall into categories (e.g. Monday, Tuesday, Wednesday...)
- smooth probabilities with category probabilities
- Domain adaptation:
 - interpolate between a general model and a domain specific model

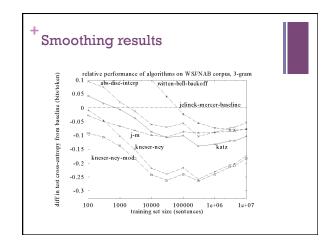
Language model evaluation

- We have two different language models (i.e. two different probability distributions over English)
- How can we determine which is better?
 - Idea 1: use it in our MT system and see which works better
- Idea 2: should predict actual English sentences with high probability

- Ask the two models to predict the likelihood of some test data
- The one with the higher probability is better
- Perplexity standardizes this idea by averaging over the probability of all words:

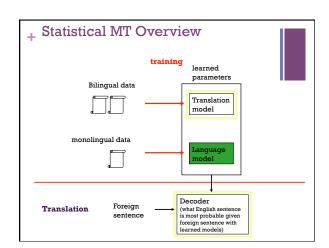
$$\max_{q} \sqrt{\prod_{i=1}^{n} P(w_i \mid w_{1..i-1})} \cong \min \frac{\sum_{i=1}^{n} \log p(w_i \mid w_{1...i-1})}{n}$$

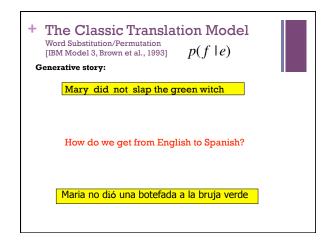
 \blacksquare Or... can be seen as the average log of the probability

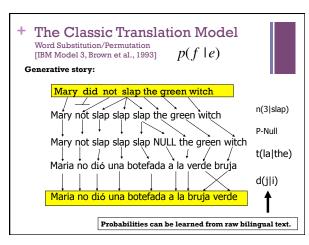


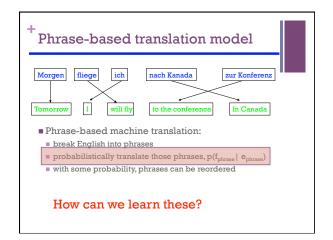
⁺Language Modeling Toolkits

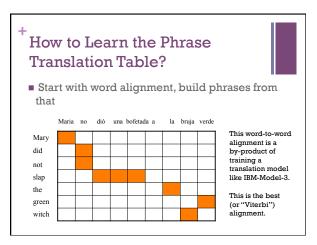
- SRI
- http://www-speech.sri.com/projects/srilm/
- CMU
- http://www.speech.cs.cmu.edu/SLM_info.html

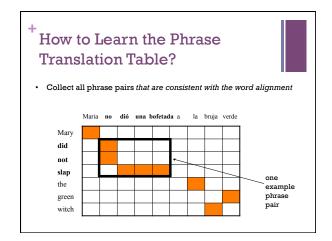


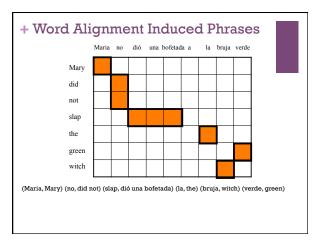


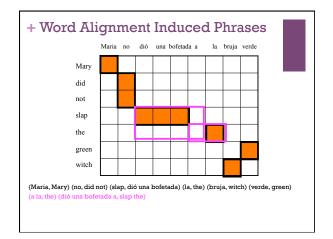


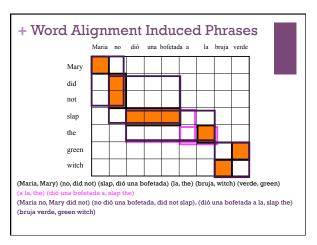


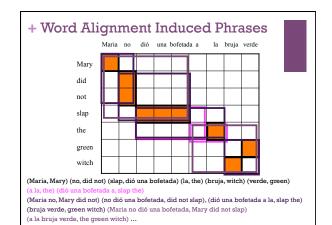


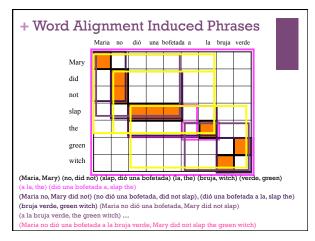


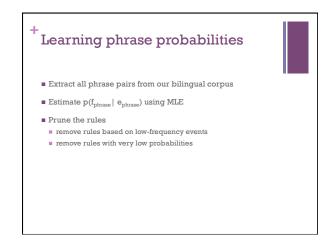


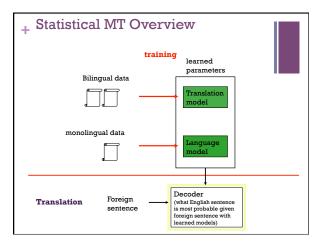


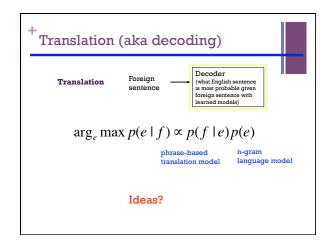


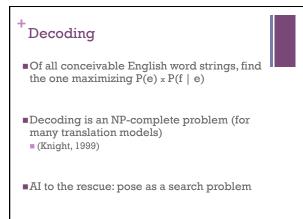


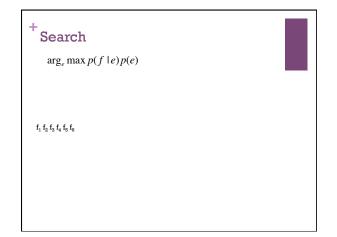


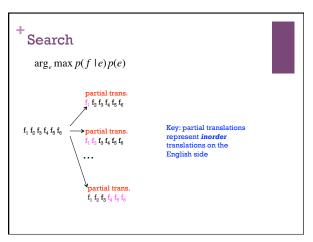


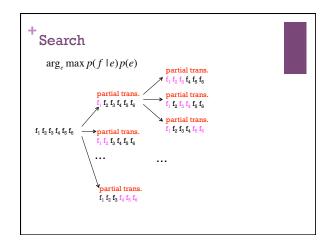


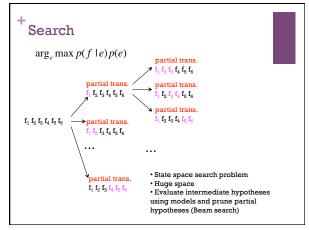


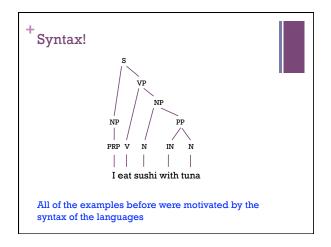


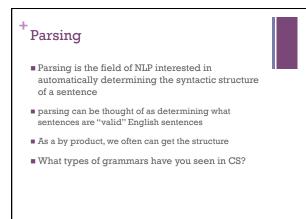


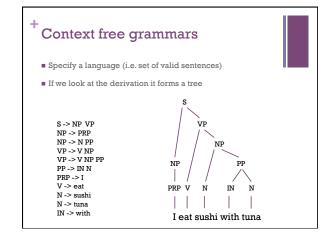


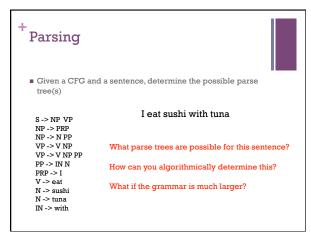


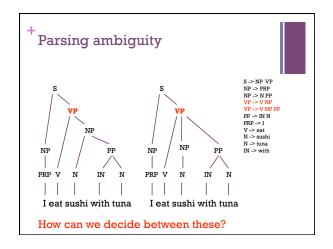


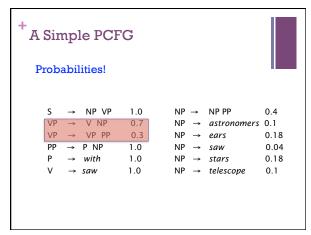


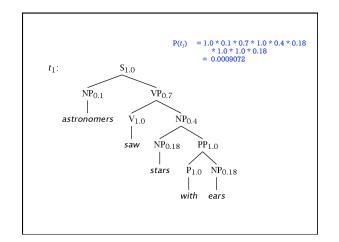


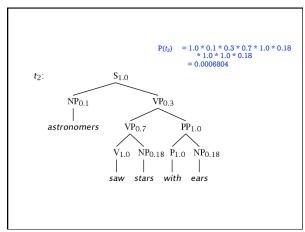


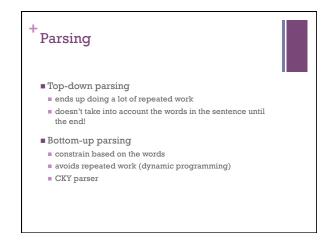


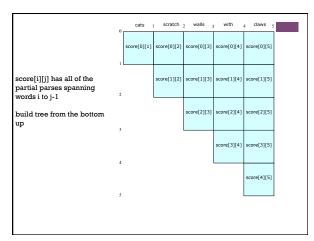


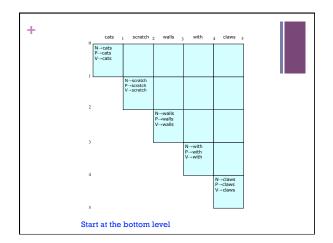


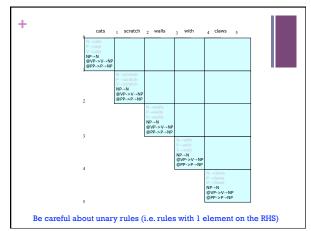


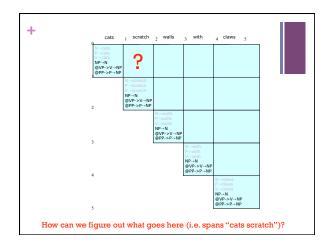


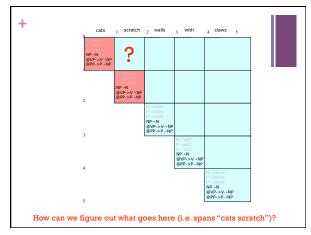


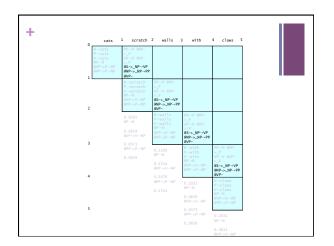


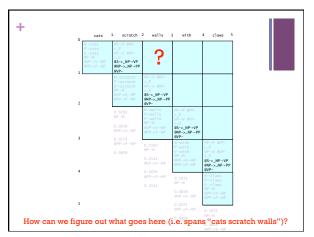


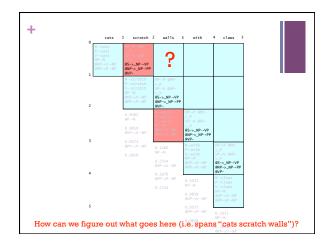


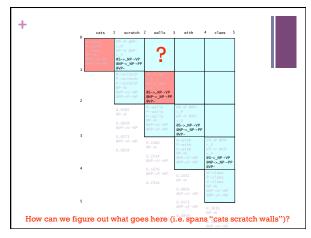


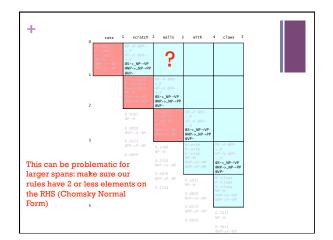


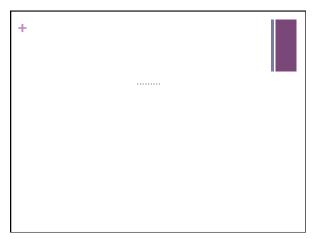


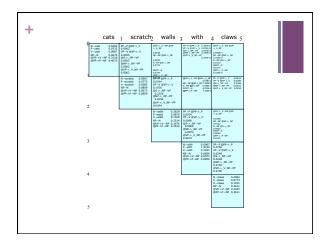


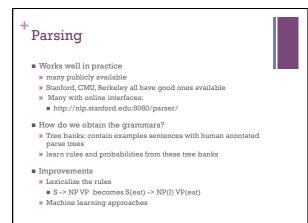


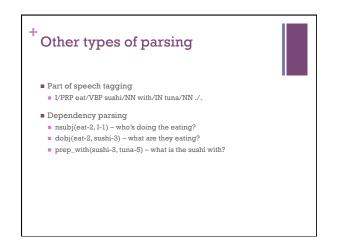












How do people do it?

The horse raced past the barn fell.

The horse that was raced past the barn fell.

⁺How do people do it?

The old man the boat.

The old *people* man the boat.

⁺How do people do it?

The man whistling tunes pianos

The man who is whistling tunes pianos

⁺How do people do it?

The government plans to raise taxes were defeated.

The plans of the government to raise taxes were defeated.

*Garden path effect

- People tend to parse this a sentence as they read it
 not bottoms-up
- For garden path sentences, the initial parse is incorrect
 have to go back and reparse the sentence

