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More Probability

+ In the United States, 55% of children get
an allowance and 41% of children get an
allowance and do household chores. What
is the probability that a child does
household chores given that the child gets
an allowance?

p(chores|allow) = p(chores,allow)/ p(allow)

=0.41/0.55=0.745

Still more probability

* A math teacher gave her class two tests.
25% of the class passed both tests and
42% of the class passed the first test.
What is the probability that a student who
passed the first test also passed the
second test?




Another Example

A patient takes a lab test and the result comes back
positive. The test has a false negative rate of 2%
and false positive rate of 2%. Furthermore, 0.5%
of the entire population have this cancer.

What is the probability of cancer if we know the
test result is positive?

Another Example

A patient takes a lab test and the result comes back
positive. The test has a false negative rate of 2% and
false positive rate of 2%. Furthermore, 0.5% of the
entire population have this cancer.

What is the probability of cancer if we know the test
result is positive?

p(cancer) = 0.005 false negative: negative result even
p(false_neg) = 0.02 though we have cancer
p(false_pos)=0.02 - -

false positive: positive result even

p(cancer | pos) = ? though we don’t have cancer

Another Example

p(cancer) = 0.005 false negative: negative result even
p(false_neg) = 0.02 though we have cancer
p(false_pos)=0.02

false positive: positive result even

p(cancer | pos) = ? though we don’t have cancer

)= p(cancer,pos)

p(cancer | pos
p(pos)

Another Example

p(cancer) = 0.005 false negative: negative result even
p(false_neg) = 0.02 though we have cancer
p(false_pos)=0.02

false positive: positive result even

p(cancer | pos) = ? though we don’t have cancer

1-p(false_neg) gives us the probability of the test
correctly identifying us with cancer

p(cancer,pos) p(cancer)(1- p(false _neg))

p(pos) p(cancer)(1- p(false _neg))+ p(=cancer)p( false _ pos)

two ways to get a positive result: cancer with a correct
positive and not cancer with a false positive




Another Example

Obtaining probabilities

p(cancer) = 0.005 false negative: negative result even
p(false_neg) = 0.02 though we have cancer

p(false_pos)=0.02 » »
false positive: positive result even

p(cancer | pos) = ? though we don’t have cancer

p(cancer | pos) =0.1975

Contrast this with p(pos | cancer) = 0.98
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» We've talked a lot about probabilities, but not
where they come from
— intuition/guess
« this can be very hard

« people are not good at this for anything but the simplest
problems

— estimate from data!

Estimating probabilities

200900000069

Total Flips: 10
Number Heads: 5
Number Tails: 5

Probability of Heads:
Number Heads / Total Flips = 0.5

Probability of Tails:
Number Tails / Total Flips = 0.5 = 1.0 — Probability of Heads

The experiments, the sample space
and the events must be defined
clearly for probability to be meaningful

Theoretical Probability

* Maximum entropy principle
— When one has only partial information about the possible
outcomes one should choose the probabilities so as to
maximize the uncertainty about the missing information

— Alternatives are always to be judged equi-probable if we
have no reason to expect or prefer one over the other
* Maximum likelihood estimation
— set the probabilities so that we maximize how likely our
data is
» Turns out these approaches do the same thing!




Law of Large Numbers

« As the number of experiments increases the relative
frequency of an event more closely approximates the
actual probability of the event.

— if the theoretical assumptions hold

« Buffon’s Needle for Computing &
— http://mste.illinois.edu/reese/buffon/buffon.html
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Large Numbers Reveal Problems in Assumptions

Results of 1,000,000 throws of a die
Number 1 2 3 4 5 6
Fraction .155 .159 .164 .169 .174 .179

Probabilistic Reasoning

» Evidence
— What we know about a situation

* Hypothesis
— What we want to conclude

* Compute

— P( Hypothesis | Evidence )




Credit Card Application

Medical Diagnosis

» E is the data about the applicant's age, job,
education, income, credit history, etc,

* His the hypothesis that the credit card will
provide positive return.

* The decision of whether to issue the credit
card to the applicant is based on the
probability P(H|E).

+ E is a set of symptoms, such as, coughing,
sneezing, headache, ...

* His a disorder, e.g., common cold, SARS, swine
flu.

» The diagnosis problem is to find an H (disorder)
such that P(H|E) is maximum.

Chain rule (aka product rule)

_PXY) p(X,Y)= P(XIY)P(Y)
p(X1Y) ) I:>

We can view calculating the probability of X
AND'Y occurring as two steps:

1.'Y occurs with some probability P(Y)

2. Then, X occurs, given that Y has occured

or you can just trust the math... ©

Chain rule

p(X,Y,Z)= P(X|Y,Z)P(Y.Z)
p(X,Y,Z)= P(X,Y |Z)P(Z)
p(X.Y,Z)= P(X|Y,Z)P(Y |Z)P(Z)
p(X,Y,Z)= P(Y,ZIX)P(X)

p(X,. X, X,) = 7




Bayes’ rule (theorem)

MMD=PWX)[::> p(X.Y)= P(XIY)P(Y)

Bayes rule

» Allows us to talk about P(Y|X) rather than P(X|Y)

P * Sometimes this can be more intuitive
* Why?
_ PXY) p(X,Y)= P(Y1X)P(X)
p(X 1Y) @) EZZi>
P(Y 1 X)P(X PY1X)P(X
p(x 1) = LELOPX p(x1y)= PXIXOPE)
P(Y) P(Y)
Bayes rule Bayes'’ rule

* p(disease | symptoms)
— For everyone who had those symptoms, how many had the
disease?
— p(symptoms|disease)
« For everyone that had the disease, how many had this symptom?

* p(good_lendee | credit_features)

— For everyone who had these credit features, how many were
good lendees?

— p(credit_features | good_lendee)
« For all the good lenders, how many had this feature

* p(cause | effect) vs. p(effect | cause)
* PHIE)vs. p(E|H)

P(features| good _lendee)P(good _lendee)

p(good _lendee | features) = P features)

» We often already have data on good lenders, so
p(features | good_lendee) is straightforward

+ p(features) and p(good_lendee) are often easier
than p(good_lendee|features)

» Allows us to properly handle changes in just the
underlying distribution of good_lendees, etc.




Other benefits

» Simple model lender model:
— score: is credit score > 600
— debt: debt < income

P(Good | Credit,Debr) = P(Credit,Dept | Good) P(Good)

P(Credit,Debt)

Other benefits

It's in the 1950s and you train your model
“diagnostically” using just p(Good | Credit, Debt).

However, in the 1960s and 70s the population of
people that are good lendees drastically increases
(baby-boomers learned from their depression era
parents and are better with their money)

p(Good | Credit,Debt)

Intiuitively, the probability of good should increase,
but Hard to figure out from just this equation

Other benefits

P(Credit,Dept | Good)P(Good)

p(Good | Credit,Debt) = -
P(Credit,Debt)

Modeled using Bayes’ rule, it's clear how
much the probability should change.
Measure what the new P(Good) is.

When it rains...

» Marie is getting married tomorrow at an outdoor
ceremony in the desert. In recent years, it has rained
only 5 days each year. Unfortunately, the weatherman
has predicted rain for tomorrow. When it actually rains,
the weatherman correctly forecasts rain 90% of the time.
When it doesn't rain, he incorrectly forecasts rain 5% of
the time. What is the probability that it will rain on the day
of Marie's wedding?

p(rain) = 5/365
p(predicted|rain) = 0.9
p(predicted|-rain) = 0.05




When it rains...

p(rain) = 5/365
p(predicted|rain) = 0.9
p(predicted|-rain) = 0.05

p(predicted | rain) p(rain)

in | predicted) =
p(rain | predicted) N predicted)

~ 0.9%5/365
p(predicted)

When it rains...

p(rain) = 5/365
p(predicted|rain) = 0.9
p(predicted|-rain) = 0.05

p(predicted) = p(predicted | rain) p(rain) + p(predicted | ~rain) p(=rain)

p(=rain | predicted) = p(predicted | =rain) p(=rain)
=0.05%360/365

Joint distributions

* For an expression with n boolean
variables e.g. P(X,, X,, ..., X,) how many
entries will be in the probability table?
—2n

» Does this always have to be the case?

Independence

» Two variables are independent if one has
nothing whatever to do with the other

» For two independent variables, knowing the
value of one does not change the probability
distribution of the other variable (or the
probability of any individual event)

— the result of the toss of a coin is independent of a roll
of a dice

— price of tea in England is independent of the result of
general election in Canada




Independent or Dependent?

+ Catching a cold and having cat-allergy
» Miles per gallon and driving habits

» Height and longevity of life

Independent variables

» How does independence affect our
probability equations/properties?

O

« If A and B are independent (written ...)
—P(A,B) = P(A)P(B)
—P(AB) = P(A)
- P(B|A) = P(B)

Independent variables

+ If A and B are independent
—-P(A,B) = P(A)P(B)
—P(A[B) = P(A)
- P(B|A) = P(B)

Reduces the storage requirement
for the distributions

Conditional Independence

» Dependent events can become independent
given certain other events

* Examples,
— height and length of life
— “correlation” studies
« size of your lawn and length of life
« If A, B are conditionally independent of C
— P(A,BIC) = P(A|C)P(BIC)
- P(AIB,C) = P(A|C)
- P(BJA,C) = P(B|C)
— but P(A,B) # P(A)P(B)




