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MAXIMUM ENTROPY 
David Kauchak 
CS457, Spring 2011 

Some material derived 
from Jason Eisner 

Linear classifier 

¨  A linear classifier predicts the label based on a weighted, linear combination of 
the features 

 

¨  For two classes, a linear classifier can be viewed as a plane (hyperplane) in the 
feature space 

! 

prediction = w0 + w1 f1 + w2 f2 + ...+ wm fm

f1 

f2 
f3 

Linear regression 

! 

h( f ) = w0 + w1 f1 + w2 f2 + ...+ wm fm

weights real value 

! 

error(h) = (yi " (w0 + w1 f1 + w2 f2 + ...+ wm fm ))
2

i=1

n
#

Learn weights by minimizing the square error on the training data 

Predict the response based on a weighted, linear combination of 
the features 

Logistic regression 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

! 

P(1 | x1,x2,...,xm )
1" P(1 | x1,x2,...,xm )

= ew0 +w1x2 +w2x2 +...+wmxm

P(1 | x1, x2,..., xm ) = (1!P(1 | x1, x2,..., xm ))e
w0+w1x2+w2x2+...+wmxm

! 

P(1 | x1,x2,...,xm ) =
1

1+ e"(w0 +w1x2 +w2x2 +...+wmxm )

… 
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Logistic function 

logistic = 1
1+ e!x

Logistic regression 

¨  Find the best fit of the data based on a logistic 

Logistic regression 

¨  How would we classify examples once we had a 
trained model? 

¨  If the sum > 0 then p(1)/p(0) > 1, so positive 
¨  if the sum < 0 then p(1)/p(0) < 1, so negative 
¨  Still a linear classifier (decision boundary is a line) 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

3 views of logistic regression 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

! 

P(1 | x1,x2,...,xm ) =
1

1+ e"(w0 +w1x2 +w2x2 +...+wmxm )

… 

… 
! 

P(1 | x1,x2,...,xm ) =
ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

linear classifier 

exponential model 
(log-linear model) 

logistic 
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Logistic regression 

¨  Find the best fit of the data based on a logistic 
function 

Training logistic regression models 

¨  How should we learn the parameters for logistic 
regression (i.e. the w’s)? 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

! 

P(1 | x1,x2,...,xm ) =
1

1+ e"(w0 +w1x2 +w2x2 +...+wmxm )

parameters 

Training logistic regression models 

¨  Idea 1: minimize the squared error (like linear 
regression) 
¤ Any problems? 

¤ We don’t know what the actual probability values are! 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

! 

error(h) = (yi " h( fi))
2

i=1

n
#

A digression 

Learning/ 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English …
 

! 

P(" #$ |") =
count(" #$)
count(")

Parsed sentences Grammar 

Why is this called Maximum Likelihood Estimation (MLE)? 
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MLE 

¨  Maximum likelihood estimation picks the values for 
the model parameters that maximize the likelihood 
of the training data 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

model (Θ) 

parameters parameter 
values 

MLE 

¨  Maximum likelihood estimation picks the values for 
the model parameters that maximize the likelihood 
of the training data 

model (Θ) 

parameters 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

parameter values 

! 

MLE(data) = argmax
"

p" (data)

If this is what you want to optimize, 
you can do NO BETTER than MLE! 

! 

= argmax
"

log( p" (datai)i
# )

! 

= argmax
"

p" (datai)i
#

MLE example 

¨  You flip a coin 100 times.  60 times you get heads. 
¨  What is the MLE for heads? 

¤  p(head) = 0.60 

¨  What is the likelihood of the data under this model 
(each coin flip is a data point)? 

! 

likelihood(data) =
p" (datai)i

#

log(0.6060 * 0.4040) = -67.3 

MLE Example 

¨  Can we do any better? 

¨  p(heads) = 0.5 
¤ log(0.5060 * 0.5040) =-69.3 

¨  p(heads) = 0.7 
¤ log(0.7060 * 0.3040)=-69.5  

! 

likelihood(data) =
p" (datai)i

#
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Training logistic regression models 

¨  Idea 1: minimize the squared error (like linear 
regression) 

¤ We don’t know what the actual probability values are! 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

! 

error(h) = (yi " h( fi))
2

i=1

n
#

Ideas? 

Training logistic regression models 

¨  Idea 2: maximum likelihood training 

! 

MLE(data) = argmax
"

p" (data)

! 

= argmaxw 
pw (labeli | f i)

i=1

n

"

… 

How do we solve this? ! 

= argmaxw 
log pw (labeli | f i)

i=1

n

"

Training logistic regression models 

¨  Idea 2: maximum likelihood training 

! 

MLE(data) = argmax
"

p" (data)

! 

= argmaxw 
pw (labeli | f i)

i=1

n

"

… 

Unfortunately, no closed form solution. ! 

= argmaxw 
log pw (labeli | f i)

i=1

n

" 1. plug in our logistic 
equation 
2. take partial 
derivatives and solve 

Convex functions 

¨  Convex functions look something like: 

¨  What are some nice properties about convex functions? 

¨  How can we find the minimum/maximum of a convex function? 
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Finding the minimum 

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out? 

One approach: gradient descent 

¨  Partial derivatives give us the slope in that dimension 
 
¨  Approach: 

¤  pick a starting point (w) 
¤  repeat until likelihood can’t increase in any dimension: 

n  pick a dimension 
n  move a small amount in that dimension towards increasing likelihood 

(using the derivative) 

Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

! 

wi = wi "#
d
dwi

error(w)

learning rate (how much we want to 
move in the error direction) 

Solving convex functions 

¨  Gradient descent is just one approach 
¨  A whole field called convex optimization 

¤ http://www.stanford.edu/~boyd/cvxbook/ 
¨  Lots of well known methods 

¤ Conjugate gradient 
¤ Generalized Iterative Scaling (GIS) 
¤  Improved Iterative Scaling (IIS) 
¤ Limited-memory quasi-Newton (L-BFGS) 

¨  The key: if we get an error function that is convex, 
we can minimize/maximize it (eventually) 
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Another thought experiment 

What is a 100,000-dimensional space like? 

You’re a 1-D creature, and you decide 
to buy a 2-unit apartment 

2 rooms (very, skinny rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

Your job’s going well and you’re 
making good money.  You upgrade to 
a 2-D apartment with 2-units per 
dimension 

4 rooms (very, flat rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

You get promoted again and start 
having kids and decide to upgrade to 
another dimension. 

Each time you add a dimension, 
the amount of space you have to 
work with goes up exponentially 

8 rooms (very, normal rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

Larry Page steps down as CEO of 
google and they ask you if you’d like 
the job.  You decide to upgrade to a 
100,000 dimensional apartment. 

How much room do you have? 
Can you have a big party? 

2100,000 rooms (it’s very quiet and lonely…) = ~1030 rooms per 
person if you invited everyone on the planet 



11/3/11	
  

8	
  

The challenge 

¨  Because logistic regression has 
fewer constraints (than, say NB) 
it has a lot more options 

¨  We’re trying to find 100,000 w 
values (or a point in a 100,000 
dimensional space) 

¨  It’s easy for logistic regression to 
fit to nuances in the data: 
overfitting 

Overfitting 

Given these points as training data, which is a better line 
to learn to separate the points? 

Preventing overfitting 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

We want to avoid any single feature from having too much weight 

! 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

" normal MLE 

ideas? 

Preventing overfitting 

! 

log
P(1 | x1,x2,...,xm )

1" P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

! 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

"

! 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

" #$ w j
2

j =1

m

"

normal MLE 

regularized MLE 

We want to avoid any single feature from having too much weight 
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Preventing overfitting: regularization 

! 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

" #$ w j
2

j =1

m

" regularized MLE 

penalize large weights 
encourage smaller weights 

What affect will this have on the learned weights assuming 
a positive α? 

-  still a convex problem! 
-  equivalent to assuming your wj are distributed from a 
Gaussian with mean 0 (called a prior) 
 

NB vs. Logistic regression 

¨  NB and logistic regression look very similar 
¤ both are probabilistic models 
¤ both are linear 
¤ both learn parameters that maximize the log-likelihood 

of the training data 

¨  How are they different? 

NB vs. Logistic regression 

NB Logistic regression 

! 

f1 log(P( f1 | l))+ f 1 log(1" P( f1 | l)) + ...+ log(P(l))

Estimates the weights under the 
strict assumption that the features 
are independent 
 
Naïve bayes is called a generative 
model; it models the joint 
distribution p(features, labels) 

If NB assumption doesn’t hold, we 
can adjust the weights to 
compensate for this 
 
Logistic regression is called a 
discriminative model; it models the 
conditional distribution directly 
 p(labels | features) 

! 

ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

Some historical perspective 

http://www.reputation.com/blog/2010/02/17/privacy-a-historical-perspective/ 



11/3/11	
  

10	
  

Estimating the best chess state 

Write a function that takes as input a “state” 
representation of tic tac toe and scores how good it is for 
you if you’re X.  How would you do it? 

(Called a state evaluation function) 

Old school optimization 

¨  Possible parses (or whatever) have scores 
¨  Pick the one with the best score 
¨  How do you define the score? 

¤ Completely ad hoc! 
¤  Throw anything you want into the mix 
¤ Add a bonus for this, a penalty for that, etc. 
¤  State evaluation function for chess… 

Old school optimization 

¨  “Learning” 

¤ adjust bonuses and penalties by hand to improve 
performance. J 

¨  Total kludge, but totally flexible too … 
¤ Can throw in any intuitions you might have 

¨  But we’re purists… we only use probabilities! 

New “revolution”? 

¨  Probabilities! 
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New “revolution”? 

¨  Probabilities! Exposé at 9 

Probabilistic Revolution 
Not Really a Revolution,  
Critics Say 
 

Probabilities no more  
than scores in disguise 
“We’re just adding stuff up like the old corrupt regime 
did,” admits spokesperson 

Probabilists   Rally   Behind    Paradigm 

“.2, .4, .6, .8!  We’re not gonna take your bait!” 
1.  Can estimate our parameters automatically  

¤  e.g., p(t7 | t5, t6)               (trigram probability) 
¤  from supervised or unsupervised data 

2.  Our results are more meaningful 
¤  Can use probabilities to place bets, quantify risk 
¤  e.g., how sure are we that this is the correct parse? 

3.  Our results can be meaningfully combined ⇒ modularity!  
¤  Multiply indep. conditional probs – normalized, unlike scores 

¤  p(English text) * p(English phonemes | English text) * p(Jap. phonemes | 
English phonemes) * p(Jap. text | Jap. phonemes) 

¤  p(semantics) * p(syntax | semantics) * p(morphology | syntax) * p
(phonology | morphology) * p(sounds | phonology) 

83% of 

^ 

Probabilists Regret Being Bound by Principle 

¨  Ad-hoc approach does have one advantage 
¨  Consider e.g. Naïve Bayes for spam categorization: 

¤  Buy this supercalifragilistic Ginsu knife set 
for only $39 today … 

¨  Some useful features: 
¤  Contains Buy  
¤  Contains supercalifragilistic  
¤  Contains a dollar amount under $100  
¤  Contains an imperative sentence 
¤  Reading level = 8th grade 
¤  Mentions money (use word classes and/or regexp to detect this) 

Any problem with these features for NB? 

Probabilists Regret Being Bound by Principle 

¨  Naïve Bayes 
¤  Contains a dollar amount under $100  
¤  Mentions money (use word classes and/or regexp to detect this) 

Buy this supercalifragilistic Ginsu knife set for 
only $39 today … 

Spam not-Spam 

< $100 0.5 0.02 

Money amount 0.9 0.1 

How likely is it to see both features in either 
class using NB?  Is this right? 
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Probabilists Regret Being Bound by Principle 

¨  Naïve Bayes 
¤  Contains a dollar amount under $100  
¤  Mentions money (use word classes and/or regexp to detect this) 

Buy this supercalifragilistic Ginsu knife set for 
only $39 today … 

Spam not-Spam 

< $100 0.5 0.02 

Money amount 0.9 0.1 

0.5*0.9=0.45 0.02*0.1=0.002 

Overestimates!  The problem is that the features are 
not independent 

NB vs. Logistic regression 

¨  Logistic regression allows us to put in features that 
overlap and adjust the probabilities accordingly 

¨  Which to use? 
¤ NB is better for small data sets: strong model 

assumptions keep the model from overfitting 

¤ Logistic regression is better for larger data sets: can 
exploit the fact that NB assumption is rarely true 

NB      vs. Logistic regression NB      vs. Logistic regression 
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Logistic regression with more classes 

¨  NB works on multiple classes 
¨  Logistic regression only works on two classes 

¨  Idea: something like logistic regression, but with more classes 
¤  Like NB, one model per each class 
¤  The model is a weight vector 

! 

P(class1 | x1,x2,...,xm ) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

! 

P(class2 | x1,x2,...,xm ) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

! 

P(class3 | x1,x2,...,xm ) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

… anything wrong with this? 

Challenge: probabilistic modeling 

! 

P(class1 | x1,x2,...,xm ) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

! 

P(class2 | x1,x2,...,xm ) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

! 

P(class3 | x1,x2,...,xm ) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

… 

These are supposed to be probabilities! 

! 

P(class1 | x1,x2,...,xm ) + P(class2 | x1,x2,...,xm ) + P(class3 | x1,x2,...,xm ) + ..."1

Ideas? 

Maximum Entropy Modeling aka  
Multinomial Logistic Regression 

! 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(class1 | x1,x2,...,xm ) + P(class2 | x1,x2,...,xm ) + P(class3 | x1,x2,...,xm ) + ...

! 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm )
i=1

|C |

"

Normalize each class probability by the sum over all the classes 

! 

=
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

ewi ,0 +wi ,1x2 +wi ,2x2 +...+wi ,mxm

i=1

|C |

"
normalizing 
constant 

Log-linear model 

! 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm )
i=1

|C |

"

! 

logP(class1 | x1,x2,...,xm ) = w1,0 + w1,1x2 + w1,2x2 + ...+ w1,mxm " log P(classi | x1,x2,...,xm )
i=1

|C |

#
$ 

% 
& 

' 

( 
) 

- still just a linear combination of feature weightings  
-  class specific features 
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Training the model 

¨  Can still use maximum likelihood training 

¨  Use regularization 

¨  Plug into a convex optimization package 
¤  there are a few complications, but this is the basic idea 

! 

MLE(data) = argmax
"

log p(labeli | f i)
i=1

n

#

! 

MLE(data) = argmax
"

log p(labeli | f i)
i=1

n

# $%R(")

Maximum Entropy 

¨  Suppose there are 10 classes, A through J. 
¨  I don’t give you any other information. 
¨  Question: Given a new example m: what is your guess for p(C | m)? 

¨  Suppose I tell you that 55% of all examples are in class A. 
¨  Question: Now what is your guess for p(C | m)? 

¨  Suppose I also tell you that 10% of all examples contain Buy and 
80% of these are in class A or C. 

¨  Question: Now what is your guess for p(C | m),  
  if m contains Buy? 

 

Maximum Entropy 

A B C D E F G H I J 
prob 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Maximum entropy principle: given the constraints, pick the 
probabilities as “equally as possible” 

Qualitatively 

Quantitatively 
Maximum entropy: given the constraints, pick the probabilities so as 
to maximize the entropy 

! 

Entropy(model) = p(c)log p(c)
c
"

Maximum Entropy 

A B C D E F G H I J 
prob 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Maximum entropy principle: given the constraints, pick the 
probabilities as “equally as possible” 

Qualitatively 

Quantitatively 
Maximum entropy: given the constraints, pick the probabilities so as 
to maximize the entropy 

! 

Entropy(model) = p(c)log p(c)
c
"
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Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

¨  Column A sums to 0.55   (“55% of all messages are in class A”) 

 

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

¨  Column A sums to 0.55 
¨  Row Buy sums to 0.1   (“10% of all messages contain Buy”) 

 

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

¨  Column A sums to 0.55 
¨  Row Buy sums to 0.1 
¨  (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”) 
 
§  Given these constraints, fill in cells “as equally as possible”: 

maximize the entropy  (related to cross-entropy, perplexity) 

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - … 
Largest if probabilities are evenly distributed 

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

¨  Column A sums to 0.55 
¨  Row Buy sums to 0.1 
¨  (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”) 
 
§  Given these constraints, fill in cells “as equally as possible”: 

maximize the entropy 
§  Now p(Buy, C) = .029  and  p(C | Buy) = .29 
§  We got a compromise: p(C | Buy) < p(A | Buy) < .55 
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Generalizing to More Features 

A B C D E F G H … 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

<$100 
Other 

What we just did 

¨  For each feature (“contains Buy”), see what fraction of 
training data has it 

¨  Many distributions p(c,m) would predict these fractions  
¨  Of these, pick distribution that has max entropy 

¨  Amazing Theorem: The maximum entropy model is the 
same as the maximum likelihood model! 
¤  If we calculate the maximum likelihood parameters, we’re also 

calculating the maximum entropy model 

What to take home… 

¨  Many learning approaches 
¤  Bayesian approaches (of which NB is just one) 
¤  Linear regression 
¤  Logistic regression 
¤  Maximum Entropy (multinomial logistic regression) 
¤  SVMs 
¤  Decision trees 
¤  … 

¨  Different models have different strengths/weaknesses/uses 
¤  Understand what the model is doing 
¤  Understand what assumptions the model is making 
¤  Pick the model that makes the most sense for your problem/data 

¨  Feature selection is important 

Articles discussion 

¨  http://gigaom.com/mobile/wilson-siri-call-911/ 


