Language acquisition

0 http:/ /www.youtube.com/watch?v=RE4ce4mexrU

LANGUAGE MODELING:
Nlele e

9/27/11

Admin

o Assignment 2 out

o bigram language modeling
o Java
o Can work with partners

= Anyone looking for a partner?
o Due Wednesday 10/5
o Style/commenting (JavaDoc)
o Some advice

= Start now!

m Spend 1-2 hours working out an example by hand (you can check
your answers with me)

= HashMap

Admin

o Our first quiz next Tuesday (10/4)
o In-class (~30 min.)
1 Topics
= corpus analysis
= regular expressions
= probability
= language modeling
1 Open book
u we'll try it out for this one
u better to assume closed book (30 minutes goes by fast!)
07.5% of your grade




9/27/11

Today

smoothing
techniques

Today

o Take home ideas:
Key idea of smoothing is to redistribute the probability
to handle less seen (or never seen) events
= Still must always maintain a true probability distribution
Lots of ways of smoothing data

Should take into account features in your datal

Smoothing

What if our test set contains the following sentence, but one of the
trigrams never occurred in our training data?

P(l think today is a good day to be me) =
P(l | <start> <start>) x
P(think | <start> 1) x
P(today | | think) x If any of these has never been
P(is| think today) x seen before, prob = 0!
P(a] today is) x
P(good | is a) x

Smoothing

P(l think today is a good day to be me) =
P(I | <start> <start>) x

P(think | <start> 1) x

P(today | | think) x These probability estimates
P(is| think today) x may be inaccurate.

P(a| today is) x Smoothing can help reduce
P(good | is a) x some of the noise.




9/27/11

Add-lambda smoothing

0 A large dictionary makes novel events too probable.

o add A = 0.01 to all counts

see the abacus 1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203

see the Abram 0 0/3 0.01 0.01/203
0.01 0.01/203

see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

Vocabulary

o n-gram language modeling assumes we have a fixed
vocabulary
why?

o1 Whether implicit or explicit, an n-gram language model
is defined over a finite, fixed vocabulary

. What happens when we encounter a word not in our
vocabulary (Out Of Vocabulary)?
If we don't do anything, prob = 0
Smoothing doesn’t really help us with this!

Vocabulary

o To make this explicit, smoothing helps us with...

all entries in our vocabulary

!

see the abacus
see the abbot
see the abduct
see the above

see the Abram

see the zygote

O N O O =

1.01
0.01
0.01
2.01
0.01
0.01
0.01

Vocabulary

0 and...

Vocabulary  Counts Smoothed counts

a 10 10.01
able 1 1.01
about 2 2.01
account 0 0.01
acid 0 = 0.01
across 3 g 3.01
young 1 1.01
zebra 0 0.01

How can we have words in our
vocabulary we've never seen before?




9/27/11

Vocabulary

Choosing a vocabulary: ideas?
Grab a list of English words from somewhere
Use all of the words in your training data
Use some of the words in your training data
for example, all those the occur more than k times
Benefits/drawbacks?

Ideally your vocabulary should represents words you're
likely to see

Too many words: end up washing out your probability
estimates (and getting poor estimates)

Too few: lots of out of vocabulary

Vocabulary

No matter your chosen vocabulary, you're still going
to have out of vocabulary (OOV)

How can we deal with this?

Ignore words we've never seen before
Somewhat unsatisfying, though can work depending on the
application
Probability is then dependent on how many in vocabulary
words are seen in a senftence/text

Use a special symbol for OOV words and estimate the

probability of out of vocabulary

Out of vocabulary

Add an extra word in your vocabulary to denote
OO0V (<O0V>, <UNK>)
Replace all words in your training corpus not in the
vocabulary with <UNK>
You'll get bigrams, trigrams, etc with <UNK>

P(<UNK> | “I am”)

p(fast | “I KUNK>")
During testing, similarly replace all OOV with
<UNK>

Choosing a vocabulary

A common approach (and the one we'll use for the
assignment):
Replace the first occurrence of each word by <UNK> in
a data set
Estimate probabilities normally
Vocabulary then is all words that occurred two or
more times
This also discounts all word counts by 1 and gives
that probability mass to <UNK>




9/27/11

Storing the table
]

How are we storing this table?
Should we store all entries?

Total 3 3/3] 203

Storing the table
[
o Hashtable
o fast retrieval
o fairly good memory usage
0 Only store those entries of things we've seen
1 for example, we don'’t store |V |3 trigrams
o For trigrams we can:
1 Store one hashtable with bigrams as keys

o Store a hashtable of hashtables (I'm recommending this)

Storing the table:

add-lambda smoothing
e

01 For those we've seen before:

C(abc) + A

Plelab) = c s av

01 Unseen n-grams: p(z|ab) = 2
A

P(zlab)y=————

10 Gy v

Store the lower order counts
(or probabilities)

How common are novel eventse

number of words occurring
X times in the corpus
e e s e e N e e

o 10000 20000 30000 40000 50000 60000

How likely are novel/unseen events?




9/27/11

How common are novel eventse

CmwruoN® oD

| L.

01000020000 30000 40000 50000 60000

number of words occurring
X times in the corpus

If we follow the pattern, something like this...

Good-Turing estimation

O =N WwWhwuoN®O

o 10000 20000 30000 40000 50000 60000

Good-Turing estimation

0 N, = number of words/bigrams occurring c times
0 Estimate the probability of novel events as:

N

unseen) = ————
P ) Total _words

0 Replace MLE counts for things with count c:

N,
cF=(c+])—
( )N

c

scale down the next
frequency up

Good-Turing (classic example)

o Imagine you are fishing
8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

o You have caught
10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

0 How likely is it that the next fish caught is from a new species
(one not seen in our previous catch)?

N, 3

p(unseen) = m = E




9/27/11

Good-Turing (classic example)

Imagine you are fishing
8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

o You have caught
10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

o How likely is it that next species is trout?

c*=(c+1)N7j =2*%=0.67
067
18

Good-Turing (classic example)

o Imagine you are fishing

8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

o You have caught

10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
o1 How likely is it that next species is perch?

N, N, is O!

cF=(c+])—
( )N

c

Nice ideq, but kind of a pain to

implement in practice

Problems with frequency based smoothing

0 The following bigrams have never been seen:

p(X | San) p( X| ate)

Which would add-lambda pick as most likely?

Which would you pick?

Witten-Bell Discounting

1 Some words are more likely to be followed by new words

Diego
Francisco
San  Luis ate
Jose
Marcos

food
apples
bananas
hamburgers
a lot

for two
grapes




9/27/11

Witten-Bell Discounting

0 Probability mass is shifted around, depending on
the context of words

O If P(w; | Wyq,ee,Wi) = O, then the smoothed
probability Pyg(w; | W;,...,w, ) is higher if the
sequence W, ;,...,W, . occurs with many different
words w,

Witten-Bell Smoothing

o For bigrams
T(w,_,) is the number of different words (types) that
occur to the right of w,,

N(w;_ ;) is the number of times w, ; occurred

Z(w,,) is the number of bigrams in the current data set
starting with w, ; that do not occur in the training data

Witten-Bell Smoothing

o if c(w,,w;) > 0

cwwy)

P W) = )

# times we saw the bigram

# times w,_, occurred  +  # of types to the right of w;

Witten-Bell Smoothing

o0 If c(w, W) =0

T(w,_)

PPwlw )=—
Zw, )N +T(w,)




9/27/11

Problems with frequency based smoothing

0 The following trigrams have never been seen:

p( car | see the ) p( zygote | see the )

p( cumquat | see the )

Which would add-lambda pick as most likely?
Good-Turing? Witten-Bell2

Which would you pick?

Better smoothing approaches

Utilize information in lower-order models
o Interpolation

p*zl xy) = Ap(z | x,¥) + Up(z | y) +(1-A- 4t )p(z)
Combine the probabilities in some linear combination

0 Backoff

feen)
P(zlxy)= Cy)
a(xy)P(zly) otherwise

if CloyD) > k

Oftenk =0 (or 1)

Combine the probabilities by “backing off” to lower models only
when we don’t have enough information

Smoothing: Simple Interpolation

Cwy), €O, (-2 C(2)

P(zI =A
=2 el e

o Trigram is very context specific, very noisy
o Unigram is context-independent, smooth

O Interpolate Trigram, Bigram, Unigram for best
combination

o How should we determine A and i 2

Smoothing: Finding parameter values

01 Just like we talked about before, split training data
into training and development

can use cross-validation, leave-one-out, etc.

0 Try lots of different values for A, w on heldout data,
pick best

o1 Two approaches for finding these efficiently
EM (expectation maximization)

“Powell search” — see Numerical Recipes in C




9/27/11

Smoothing: Jelinek-Mercer

o Simple interpolation:

Cxyz)
Pron(G13) = A0 4 (1= )P,y (31)
Clxy)
0 Should all bigrams be smoothed equally? Which of
these is more likely to start an unseen trigram?

"The Dow" Search
About 4,370,000 results (0.11 seconds) Advanced search
"Adobe acquired" Search
About 47,200 resutts (0.11 seconds) Advanced searc

Smoothing: Jelinek-Mercer

o Simple interpolation:

C

P (21 x9) = 25099
Clxy)
0 Multiple parameters based on frequency bins: smooth a

little after “The Dow”, more after “Adobe acquired”

+ (1 - }")P.\-mzmth (Z I y)

I)xmomh (Z I xy ) =

C(xyz)
MC
(C(xy)) Cloy)

+ (1= MCOYNP, o (2 1Y)

Smoothing: Jelinek-Mercer continued

P.vmooth (Z I .Xy) =

C(xyz)
MC
(C(xy)) )

+ (1= AMCy)P,, 00 (21y)

o Bin counts by frequency and assign As for each bin

0 Find As by cross-validation on held-out data

Backoff models: absolute discounting

Ppone (21 Xy) =
C(xyz)-D .
— if C(xyz)>0
C(xy)
A(XY)Pye (2 1Y) otherwise

0 Subtract some absolute number from each of the
counts (e.g. 0.75)
How will this affect rare words2

How will this affect common words?

10



9/27/11

Backoff models: absolute discounting Backoff models: absolute discounting
Ppone (2 1X9) = P e (21 XY) =
Clxyz)-D . C(xyz)-D .
—_— C(xyz)>0 — Ci 0
Co) if Clxyz) > Co) if Clxyz) >
AP ype (2 1) otherwise APy (21y)  otherwise

0 Subtract some absolute number from each of the
counts (e.g. 0.75)

will have a large effect on low counts (rare words)

What is O/ (xy)?

will have a small effect on large counts (common words)

Backoff models: absolute discounting Backoff models: absolute discounting
see the dog 1 the Dow Jones 10 see the dog 1 p(cat | see the) =2
see the cat 2 the Dow rose 5 see the cat 2
see the banana 4 the Dow fell 5 see the banana 4
see the man 1 see the man 1 2-D_2-075 _ 125
see the woman 1 see the woman 1 0w 10
see the car 1 p( rose | the Dow ) = 2 see the car 1
p(cat | see the ) =2 p( jumped | the Dow ) =2
p( puppy | see the ) =2
Popsore @ 109) = Possonae @1 03) =
C(xyz)-D " C(xyz)-D )
— if C(xyz) >0 — if C(xyz) >
C(xy) C(xy)
A(XY)P e (21Y)  otherwise a(xy)P,, ..(21y) otherwise

11



9/27/11

Backoff models: absolute discounting

Backoff models: absolute discounting

see the dog 1 p( puppy | see the ) = 2 see the dog 1 pl puppy | see the ) = 2
see the cat 2 see the cat 2
see the banana 4 o (see the) = 2 see the banana 4 o (see the) = 2
see the man 1 see the man 1
see the woman 1 How much probability mass did see the woman 1 # of types starting with “see the” * D
see the car 1 we reserve /discount for the see the car 1
bigram model? count(“see the”)
For each of the unique trigrams, we
subtracted D/count(“see the”) from the
probability distribution
P (21 Prssonre (21) =
< D if Clorvg) > Cxyz)-D R
e if Clxyz)>0 e if Clxyz)>0
AP,y (21y)  otherwise AP,y (21y)  otherwise
Backoff models: absolute discounting Calculating &
see the dog 1 _ 1 We have some number of bigrams we’re going to
p( puppy | see the ) =2 . _ .
see the cat 2 backoff to, i.e. those X where C(see the X) = O, that is
see the banana 4 Q (see the) = 2 unseen trigrams starting with “see the”
setheman 1 Wh backoff, h of th b
u] en we backoff, for each of these, we'll be
see the woman 1 # of types starting with “see the” * D . X R AR !
see the car 1 including their probability in the model: P(X | the)
count(see the”) 0 Ois the normalizing constant so that the sum of these
probabilities equals the reserved probability mass
6*D 6%*0.75
reserved _mass(see the) = 0 = 10 =045
a(see the) E p(Xlthe) = reserved _mass(see the)
Psonae (21 33) =

distribute this probability mass to all

< bigrams that we are backing off to

Cxy)
AP (21Y) - otherwise

if C(xyz)>0

X:C(see the X) == 0

12



9/27/11

Calculating &

0 We can calculate & two ways

Based on those we haven't seen:

a(see the) = reserved _ mass(see the)

Y p(X Ithe)

X:C(see the X) = 0

Or, more often, based on those we do see:

reserved _mass(see the
a(see the) = = ( )

- Y p(Xlthe)

X:C(see the X) > 0

Calculate the reserved mass

# of types starting with bigram * D
reserved_mass(bigram) =

count(bigram)

Calculate the sum of the backed off probability. For bigram “A B”:

1- Ep(XIB)

X:C(ABX) >0

either is fine in practice, 2 p(X IB)

the left is easier X:C(ABX)=0
Calculate o

1 — the sum of the
(A B) = reserved _mass(A B)

Calculating & in general: trigrams

bigram probabilities of

those trigrams that we
1- EP(X IB) saw starting with bigram
X:C(ABX)>0 AB

Calculating & in general: bigrams

Calculate the reserved mass

# of types starting with unigram * D
reserved_mass(unigram) =

count(unigram)

Calculate the sum of the backed off probability. For bigram “A B”:

1- E p(X) either is fine in practice, 2 p(X)

X:C(AX) >0 the left is easier X:C(AX) =0

Caleulate o/

1 — the sum of the

reserved _mass(A unigram probabilities of
a(A) - ~mass(A)

TS0 those bigrams that we
- E pX) saw starting with word A
X:C(AX)>0

Calculating backoff models in practice

0 Store the O/s in another table

If it's a trigram backed off to a bigram, it’s a table keyed by the
bigrams

If it's a bigram backed off to a unigram, it's a table keyed by the
unigrams

11 Compute the O's during training
After calcul
trigrams

ing all of the probabilities of seen unigrams/bigrams/

Go back through and calculate the @'s (you should have all of the
information you need)

o During testing, it should then be easy to apply the backoff model
with the O/s pre-calculated

13



9/27/11

Backoff models: absolute discounting

the Dow Jones 10 p( jumped | the Dow ) =2
the Dow rose 5
the Dow fell 5 What is the reserved mass?

# of types starting with “see the” * D

count(“see the”)

3*D 3*0.75
20 20

=0.115

reserved _mass(the Dow) =

reserved _mass(see the)

1- E p(X Ithe)

X:C(the Dow X) > 0

a(the Dow) =

Backoff models: absolute discounting

# of types starting with bigram * D
reserved_mass =
count(bigram)

o Two nice attributes:
decreases if we've seen more bigrams
u should be more confident that the unseen trigram is no good

increases if the bigram tends to be followed by lots of
other words

u will be more likely to see an unseen trigram

Kneser-Ney

1 ldea: not all counts should be discounted with the same value

common,

P(Francisco | eggplant) vs
P(stew | eggplant)

rarer

If we've never seen either bigram before, which should be
more likely? why?2

What would an normal discounted backoff model say?

What is the problem?2

Kneser-Ney

1 ldea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs
P(stew | eggplant)

Problem:

- Both of these would have the same backoff parameter
since they’re both conditioning on eggplant

- We then would end up picking based on which was most
frequent

- However, even though Francisco tends to only be
preceded by a small number of words

14



9/27/11

Kneser-Ney

01 Idea: not all counts should be discounted with the same
value

0 “Francisco” is common, so backoff /interpolated
methods say it is likely
But it only occurs in context of “San”

o “stew” is common in many contexts

0 Weight backoff by number of contexts word occurs in

P(Francisco | eggplant) low
P(stew | eggplant) higher

Kneser-Ney

Pporre (21 Xy) =

C(xyz)-D .
“Chy) if C(xyz)>0

AP, (2 1) otherwise

instead of the probability of

the word/bigram occurring,
4 use the probability of the

word to follow other words

Popsonne (2 1x9) =

C(xyz)-D

Clxy)
a(xy)Peonrmvuarion (2 1Y) otherwise

if C(xyz)>0

PCONTINUATION

0 Relative to other words, how likely is this word to
continue (i.e. follow) many other words

# types ending with yz
E #types ending with bigram bc

beEbigrams

vz >0y
E {abc : C(abc) > 0}‘

beEbigrams

P('UNTINL’ATI()N (zl )=

Other language model ideas?

Skipping models: rather than just the previous 2 words,
condition on the previous word and the 3¢ word back,
etfc.
Caching models: phrases seen are more likely to be seen
again (helps deal with new domains)

o Clustering:

some words fall into categories (e.g. Monday, Tuesday,
Wednesday...)

smooth probabilities with category probabilities
Domain adaptation:

interpolate between a general model and a domain specific
model

15



9/27/11

Smoothing results

diff in test cross-cntropy from bascline (bits/token)

-0.15 -

relative performance of algorithms on WSINAB corpus, 3-gram
~_abs-disé-interp itten-bell-backoff

jelinek-mercer-baseline

Kneser-ney-moth,
2 - “\ N

100 1000 10000 100000 let06 let07
training set size (scntences)

Take home ideas

0 Key idea of smoothing is to redistribute the
probability to handle less seen (or never seen)
events

Must always maintain a true probability distribution

0 Lots of ways of smoothing data

0 Should take into account features in your datal

o For n-grams, backoff models and, in particular,
Kneser-Ney smoothing work well

Language Modeling Toolkits

o SRI

o CMU

16



