
CS150 - Sample Final

Name:

Honor code:

You may use the following material on this exam:

• The final exam “cheat sheet” which I have provided

• The “matlab basics” handout (without any additional notes)

• Up to two pages of notes with 10 point font or larger (or comparable hand-written)

Beyond that, this exam is closed book, closed notes, closed computer, closed calculator, etc.

You do not need to include comments or constants in your code.

http://www.xkcd.com/986/

For grading:

1

1: Odd and ends 18

2: Matlab 10

3: Dictionaries 9

4: Recursion 13

5: We’ve got problems 7

6: Sequences 12

Total 69

1. [18 points] Odds and ends

(a) [5 points] T/F: For each statement below, indicate whether the statement is true or
false. If you make an assumption about something in the statement, please note it
underneath your answer.

For all possible inputs insertion sort is faster than selection sort.
False. On average, insertion sort does require less comparisons, however, for any
given run, the actual run-time could be faster or slower than selection sort.

01101 in binary is equal to 13.
True.

‘*’ in R for vectors is equivalent to ‘.*’ in Matlab for vectors.
True.

If we typed the two first statements below, s would have the value shown below:

>>> s = "this is a test"

>>> s.upper()

’THIS IS A TEST’

>>> s

’THIS IS A TEST’

False. Strings are immutable.

For an O(n2) algorithm, if it takes 10 seconds to run on 1000 items we would expect
it to take approximately 40 seconds on 2000 items.
True. For algorithms with quadratic run-times, doubling the size would result in
roughly quadrupling the run-time.

2

(b) [3 points] Add the following two binary numbers: 01101101 with 00111101. Make sure
to show your work (i.e. carries, etc.).

11111 1

01101101

00111101

10101010

(c) [5 points] Given the following code in a file called my file.py:

some code up here

if __name__ == "__main__":

print "bananas " * 2

else:

print "apples"[:-3]

print "End of " + __name__

What would happen if the file were run with the green arrow in Wing?

You’d see:
bananas bananas
End of main

What would happen if we then typed import my file in the python shell?

You’d see:
app
End of my file

3

(d) [5 points] The xor (exclusive or) of two boolean values is True if either value is True,
but is False if they are both True or both False. The following is the “truth table” for
xor:

a b xor(a,b)

F F F
F T T
T F T
T T F

Write a function xor that calculates the exclusive or of two boolean variables. Remember
to use good boolean style!

def xor(a,b):

return a != b

4

2. [10 points] Matlab

(a) [4 points] If we initialized x in Matlab to be the following matrix:

10 4 3

1 7 15

6 4 2

What would be displayed by the following:

i. disp(x(:, 1))

10
1
6

ii. disp(sum(x))

17 15 20

iii. disp(sum(x > 5))

2 1 1

iv. disp(sum(sum(x .* (x > 5))))

38

(b) [6 points] Write a Matlab function that takes a matrix as a parameter and returns the
difference between the largest and smallest values in that matrix.

function result = min minus max(m):

result = max(max(m)) - min(min(m))

5

3. [9 points] Dictionaries

(a) [6 points] Write a function called dictionary add that takes two dictionaries whose
values are numbers and returns a dictionary containing the keys found in both dictio-
naries. The value associated with these keys should be the sum of the values in the two
dictionaries. If a key does not occur in BOTH dictionaries, then it should not occur in
the returned dictionary. For example:

>>> d1 = {"a":1, "b":2, "c":3}

>>> d2 = {"a":4, "c":5, "d": 6}

>>> dictionary_add(d1, d2)

{’a’: 5, ’c’: 8}

def dictionary add(dict1, dict2):

result dict = {}
for key in dict1:

if key in dict2:

result dict[key] = dict1[key] + dict2[key]

return result dict

(b) [3 points] In one sentence, what does the following function do if dict1 and dict2 are
dictionaries? Be concise, but precise.

def mystery(dict1, dict2):

for key in dict1:

if not key in dict2:

return False

return True

Returns True if all of the keys in dict1 are in dict2, False otherwise.

6

4. [13 points] Recursion

(a) [5 points] Draw what the following function would draw on the screen for the call
mystery(80, 5) assuming the turtle started at the center of the screen (0,0) and was
facing to the right. In addition, annotate your drawing with the final turtle location.

from turtle import *

def mystery(length, levels):

if levels == 0:

dot()

else:

forward(length)

left(90)

mystery(length/2, levels-1)

right(90)

backward(length)

Run it and see :)

7

(b) [3 points] What does the following function return for the input “CS class”:

def mystery(s):

if s == "":

return s

else:

if s[0].isupper():

return s[0].lower() + mystery(s[1:])

else:

return s[0].upper() + mystery(s[1:])

cs CLASS

(c) [5 points] Write a function called sum squared that takes a list of numbers as a pa-
rameter and returns the sum of the each of the numbers squared. For example,
sum squared([1, 2, 3]) would return 14 (that is, 1*1 + 2*2 + 3*3=14). If you write
the function recursively you will receive up to 5 points. If do not use recursion you can
only receive a maximum of 3.5 points.

def sum squared(list):

if len(list) == 0:

return 0

else:

return list[0]*list[0] + sum squared(list[1:])

8

5. [7 points] We’ve got problems...

(a) [4 points] The following program expects two command-line arguments. The program
is supposed to print the usage if the user doesn’t supply exactly two arguments, or run
the function my function(...) if the user does supply two arguments. However, the
program has two general problems. Fix the problems so that it works as expected. You
don’t have to rewrite the function, just mark-up the one below.

import sys

def my_function(a, b):

some function stuff

def print_usage():

print "my_program.py <number> <number>"

number1 = sys.argv[0]

number2 = sys.argv[1]

if len(sys.argv) != 2:

print_usage()

else:

my_function(number1, number2)

1) sys.argv will have 3 entries with the first one being the name of the program, so all of
the indices referring to sys.argv need to be increased by 1 (0→1, 1→2, 2→3). 2) Move
the declaration of number1 and number2 inside the else statement. Otherwise you’ll get
an index out of bounds error.

(b) [3 points] The following function attempts to check if a number is prime or not, but it
has a mistake. Correct the function:

import math

def isprime(num):

"""Returns True if the input is a prime number, False otherwise"""

for i in range(2, int(math.sqrt(num)+1)):

if num % i == 0:

return False

else:

return True

Move the “return True” to be *after* the for loop, not inside it.

9

6. [12 points] Sequences

(a) [6 points] Write a function called unique that takes a string as a parameter and returns
True if all of the characters in the string are unique (i.e no repeats) or False if there
are duplicate letters. You will only get partial credit if your function is not efficient.

Many ways to do it, but should be using a set for efficiency. Here’s one simple way:

def unique(string):

return len(set(string)) == len(string)

10

(b) [6 points] Write a function reverse sentence that takes a string representing a sen-
tence and returns a new string where all the words in the sentence are in reverse order.
You can assume a “word” is anything separated by a space. For example:

>>> reverse_sentence("this is a sentence")

’sentence a is this’

def reverse sentence(sentence):

words = sentence.split()

reversed = ””

for word in words:

reversed = word + ” ” + reversed

return reversed.strip()

Have a great break!

http://www.gardyloocomics.com/2008/06/21/huddling/

11

