
2/16/11

1

http://www.youtube.com/watch?v=dD_NdnYrDzY

PARSING 2
David Kauchak
CS159 – Spring 2011

some slides adapted from
Ray Mooney

Admin

  Quiz 1 (out of 32)
 High: 31
 Average: 26

  Assignment 3 will be out soon
  Watson vs. Humans

Parsing

  Given a CFG and a sentence, determine the
possible parse tree(s)

S -> NP VP
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

I eat sushi with tuna

2/16/11

2

Parsing

  Top-down parsing

  start at the top (usually S) and apply rules

  matching left-hand sides and replacing with right-hand sides

  Bottom-up parsing
  start at the bottom (i.e. words) and build the parse tree up from there

  matching right-hand sides and replacing with left-hand sides

Dynamic Programming Parsing

  To avoid extensive repeated work you must cache
intermediate results, specifically found constituents

  Caching (memoizing) is critical to obtaining a
polynomial time parsing (recognition) algorithm for
CFGs

  Dynamic programming algorithms based on both
top-down and bottom-up search can achieve O(n3)
recognition time where n is the length of the input
string.

CKY

  First grammar must be converted to Chomsky
normal form (CNF)
 We’ll allow all unary rules, though

  Parse bottom-up storing phrases formed from all
substrings in a triangular table (chart)

CNF Grammar

S -> VP
VP -> VB NP
VP -> VB NP PP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

2/16/11

3

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

what does this cell
represent?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

all constituents spanning
1-3 or “the man with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

how could we figure this
out?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

Key: rules are binary and
only have two constituents
on the right hand side

VP -> VB NP
NP -> DT NN

2/16/11

4

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “the” with any for
“man with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “the man” with any for
“with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film” with any for “the
man with trust”

2/16/11

5

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the” with any for
“man with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the man” with
any for “with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the man with”
with any for “trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What if our rules
weren’t binary?

2/16/11

6

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film” with any for “the
man” with any for “with
trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What order should we fill
the entries in the chart?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What order should we
traverse the entries in the
chart?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

From bottom to top, left to
right

2/16/11

7

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

Top-left along the
diagonals moving to the
right

CKY parser: unary rules

  Often, we will leave unary rules
rather than converting to CNF

  Do these complicate the algorithm?
 Must check whenever we add a

constituent to see if any unary rules
apply

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> man
VB -> trust
NN -> man
NN -> film
NN -> trust

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> man
VB -> trust
NN -> man
NN -> film
NN -> trust

NN
NP
VB

DT

VB
NN
NP

IN

VB
NN
NP

2/16/11

8

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> man
VB -> trust
NN -> man
NN -> film
NN -> trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

NN
NP
VB

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> man
VB -> trust
NN -> man
NN -> film
NN -> trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VP2
VP
S

NP

NN
NP
VB

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> man
VB -> trust
NN -> man
NN -> film
NN -> trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VP2
VP
S

NP

NP

NN
NP
VB

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> man
VB -> trust
NN -> man
NN -> film
NN -> trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VP2
VP
S

NP

NP

S
VP
VP2

NN
NP
VB

2/16/11

9

CKY: some things to talk about

  After we fill in the chart, how do we know if there is
a parse?
  If there is an S in the upper right corner

  What if we want an actual tree/parse?

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

S

VP

VB NP

Film the man with trust

NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

S

VP

VB NP

NP PP

Film the man with trust

NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

S

VP

VB NP

NP PP

Film the man with trust

DT NN IN NP

…

NN
NP
VB

2/16/11

10

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

Where do these arrows/
references come from?

NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

To add a constituent in a
cell, we’re applying a
rule

The references represent
the smaller constituents we
used to build this
constituent

S -> VP NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

To add a constituent in a
cell, we’re applying a
rule

The references represent
the smaller constituents we
used to build this
constituent

VP -> VB NP NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

What about ambiguous
parses?

NN
NP
VB

2/16/11

11

CKY: retrieving the parse

  We can store multiple derivations
of each constituent

  This representation is called a
“parse forest”

  It is often convenient to leave it in
this form, rather than enumerate
all possible parses. Why?

CKY: some things to think about

S -> VP
VP -> VB NP
VP -> VB NP PP
NP -> DT NN
NP -> NN
…

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
…

Actual grammar CNF

We get a CNF parse tree but want one for the
actual grammar

Ideas?

Parsing ambiguity

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN N

PP NP

VP

S
S -> NP VP
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

How can we decide between these?

A Simple PCFG

S → NP VP 1.0

VP → V NP 0.7

VP → VP PP 0.3

PP → P NP 1.0
P → with 1.0

V → saw 1.0

 NP → NP PP 0.4

 NP → astronomers 0.1

 NP → ears 0.18

 NP → saw 0.04
 NP → stars 0.18

 NP → telescope 0.1

Probabilities!

2/16/11

12

Just like n-gram language modeling, PCFGs break the
sentence generation process into smaller steps/probabilities

The probability of a parse is the product of the PCFG rules

= 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18
 * 1.0 * 1.0 * 0.18
= 0.0009072

= 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18
 * 1.0 * 1.0 * 0.18
= 0.0006804

Parsing with PCFGs

  How does this change our CKY algorithm?
 We need to keep track of the probability of a

constituent
  How do we calculate the probability of a

constituent?
 Product of the PCFG rule times the product of the

probabilities of the sub-constituents (right hand sides)
 Building up the product from the bottom-up

  What if there are multiple ways of deriving a
particular constituent?
 max: pick the most likely derivation of that constituent

Probabilistic CKY

  Include in each cell a probability for each non-
terminal

  Cell[i,j] must retain the most probable derivation of
each constituent (non-terminal) covering words i
through j

  When transforming the grammar to CNF, must set
production probabilities to preserve the probability
of derivations

2/16/11

13

 Probabilistic Grammar Conversion

S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
 0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me
 0.1 0.02 0.02 0.06
NP → Houston | NWA
 0.16 .04
NP → Det Nominal
Nominal → book | flight | meal | money
 0.03 0.15 0.06 0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
 0.1 0.04 0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP → Det Nominal 0.60

What is the probability
of the NP?

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

NP → Det Nominal 0.60

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP → Verb NP 0.5

What is the probability
of the VP?

2/16/11

14

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

VP → Verb NP 0.5

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

2/16/11

15

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.05*.5*
 .000864
 =.0000216

S:.03*.0135*
 .032
 =.00001296

S → VP PP 0.03

S → Verb NP 0.05

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.0000216
Pick most probable
parse, i.e. take max to
combine probabilities
of multiple derivations
of each constituent in
each cell

2/16/11

16

PCFG: Training

  If we have example parsed sentences, how can we
learn a set of PCFGs?

.

.

.

Tree Bank

Supervised
PCFG
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

S

NP VP

John V NP PP

put the dog in the pen

S

NP VP

John V NP PP

put the dog in the pen

Extracting the rules

PRP

NP

V N IN

PP

NP

VP

S

I eat sushi with tuna

N

What CFG rules occur in this tree?

S -> NP VP
NP -> PRP
PRP -> I
VP -> V NP
V -> eat
NP -> N PP
N -> sushi
PP -> IN N
IN -> with
N -> tuna

Estimating PCFG Probabilities

  We can extract the rules from the trees

  Then, we can count the probabilities using MLE

€

P(α →β |α) =
count(α →β)
count(α →γ)

γ

∑
=
count(α →β)
count(α)

Estimating PCFG Probabilities

S -> NP VP 10
S -> V NP 3
S -> VP PP 2
NP -> N 7
NP -> N PP 3
NP -> DT N 6

P(S -> V NP) = ?

2/16/11

17

Estimating PCFG Probabilities

S -> NP VP 10
S -> V NP 3
S -> VP PP 2
NP -> N 7
NP -> N PP 3
NP -> DT N 6

P(S -> V NP) = ?

P(S -> V NP) = P(S -> V NP | S) =
count(S -> V NP)

count(S)
= 3/15

Generic PCFG Limitations

  PCFGs do not rely on specific words or concepts, only
general structural disambiguation is possible (e.g.
prefer to attach PPs to Nominals)
 Generic PCFGs cannot resolve syntactic ambiguities that

require semantics to resolve, e.g. ate with fork vs.
meatballs

  Smoothing/dealing with out of vocabulary

  MLE estimates are not always the best

