
MACHINE TRANSLATION PAPER 1

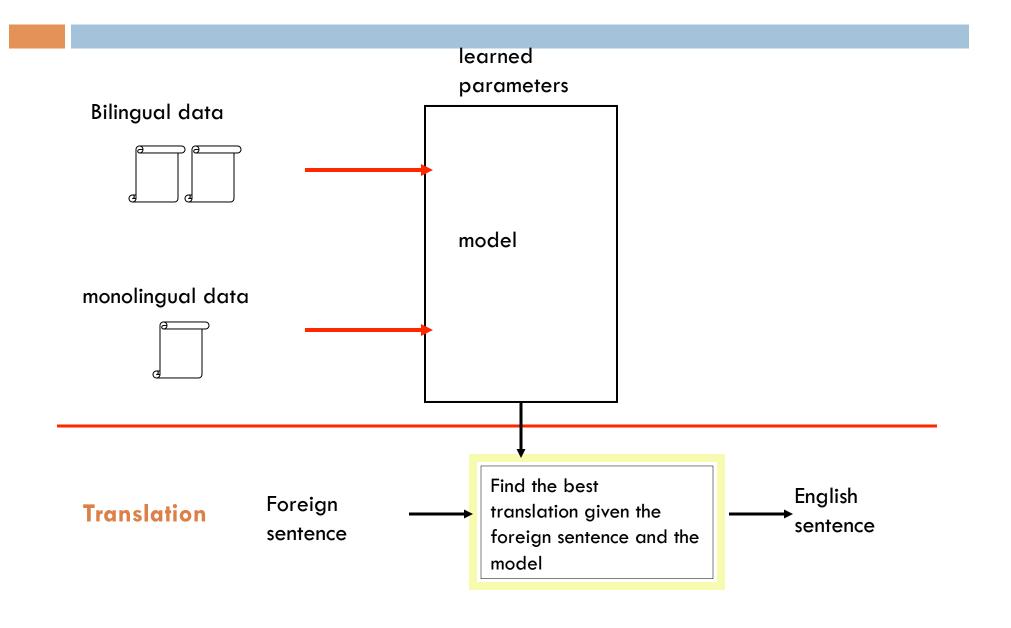
Daniel Montalvo, Chrysanthia Cheung-Lau, Jonny Wang CS159 Spring 2011

Paper

Intersecting multilingual data for faster and better statistical translations. Association for Computational Linguistics, June 2009.

Yu Chen

Martin Kay Andreas Eisele


Introduction

Statistical Machine Translation (SMT):

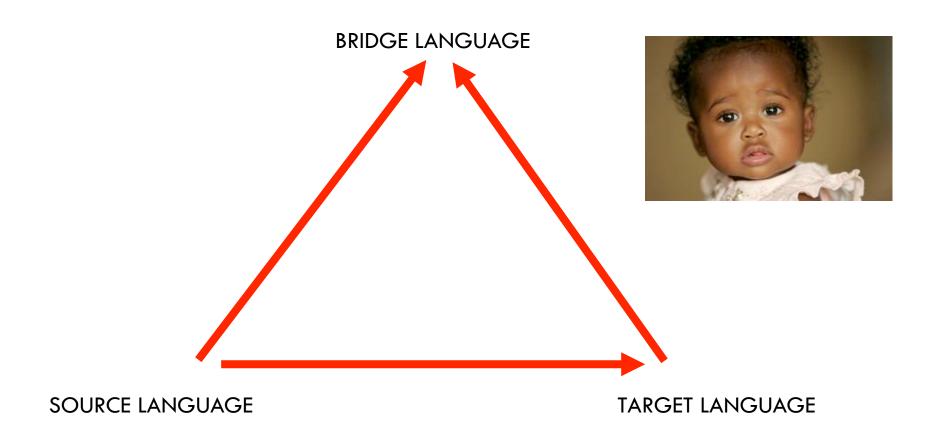
$$p(e \mid f) \propto p(f \mid e) p(e)$$
 translation model language model

Statistical MT Overview

Problems

- Noise from word/phrase alignment
- Efficiency: time and space

Problems


Sie lieben ihre Kinder nicht They love their children not They don't love their children

ihre Kinder nicht => a) their children are not b) their children Language model =/= They love their children are not Solution: remove b) from translation model

- http://www.translationparty.com/#9144687
- http://www.translationparty.com/#9144706
- http://www.translationparty.com/#9144869
- http://www.translationparty.com/#9144872
- http://www.translationparty.com/#9144881

Solution: Triangulation

Triangulation

Look at source-target phrase pair (S,T)

$$\square$$
 S => X, T => X, S => T (keep)

$$\Box$$
 S => X, T => Y, S =/> T (drop)

Experimental Design

- Database: Europarl (1.3 million)
- Divided by maximal sentence length
- Spanish => English; bridges: French, Portuguese,
 Danish, German, Finnish
- Models from Moses toolkit
- Train, develop, test

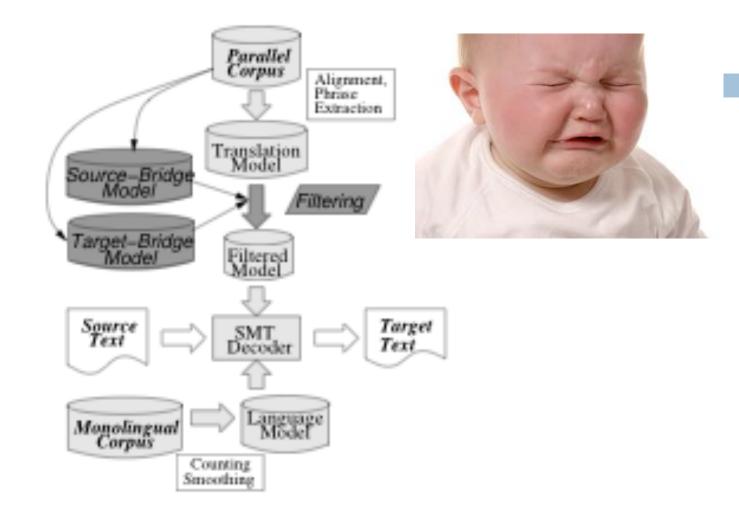


Figure 1: Triangulated filtering in SMT systems

Results

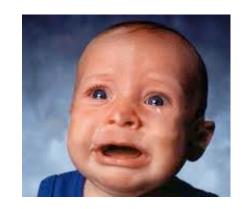
Bridge	EP-20	EP-40	EP-50
_	26.62	31.43	31.68
pŧ	28.40	32.90	33.93
fr	28.28	32.69	33.47
da	28.48	32.47	33.88
de	28.05	32.65	33.13
fi	28.02	31.91	33.04

Table 3: BLEU scores of translations using filtered phrase tables

	Tir	me	Table Size		
Model+Bridge	$T_l(s)$	$T_{t}(s)$	N	S_{PT} (byte)	S_{RT} (byte)
EP-20+	55	3529	7,599,271	953M	717M
EP-20+ pt	53	2826	1,712,508 (22.54%)	198M	149M
EP-20+ fr	48	2702	1,536,056 (20.21%)	172M	131M
EP-20+ da	52	2786	1,659,067 (21.83%)	186M	141M
EP-20+ de	43	2732	1,260,524 (16.59%)	132M	101M
EP-20+ fi	47	2670	1,331,323 (17.52%)	147M	111M
EP-40+	65	3673	19,199,807	2.5G	1.9G
EP-40+ pt	50	3091	8,378,517 (43.64%)	1.1G	1.8G
EP-40+ fr	46	3129	8,599,708 (44.79%)	1.1G	741M
EP-40+ da	42	3050	6,716,304 (34.98%)	842M	568M
EP-40+ de	46	3069	6,113,769 (31.84%)	725M	492M
EP-40+ fi	40	2889	4,473,483 (23.30%)	533M	353M
EP-50+	140	4130	54,382,715	7.1G	5.4G
EP-50+ pt	78	3410	13,225,654 (24.32%)	1.6G	1.3G
EP-50+ fr	97	3616	24,057,849 (44.24%)	3.0G	2.3G
EP-50+ da	81	3418	12,547,839 (23.07%)	1.5G	1.2G
EP-50+ de	95	3488	15,938,151 (29.31%)	1.9G	1.5G
EP-50+ fi	71	3191	7,691,904 (17.75%)	895M	677M

Table 2: System efficiency: time consumption and phrase-table size

Phrase Length


"Long phrases suck" (Koehn, 2003)

fabricantes	pt	fr	da	de	fi	
a manufacturer	✓	✓	V		✓	4
battalions	✓	V	V			3
car manufacturers have						0
car manufacturers	✓	V	V	✓	✓	5
makers	✓	✓			✓	3
manufacturer	✓	V	V	✓	✓	5
manufacturers	<	V	V	✓	✓	5
producers are		V	V	√		3
producers need						0
producers	✓	V	V	✓	✓	5

Table 6: Phrase-table entries before and after filtering a model with different bridges

Bridge	EP-20	EP-40	EP-50
_	3.776	4.242	4.335
pt	3.195	3.943	3.740
fir	3.003	3.809	3.947
da	3.005	3.74	3.453
de	2.535	3.501	3.617
fi	2.893	3.521	3.262

Table 5: Average phrase length

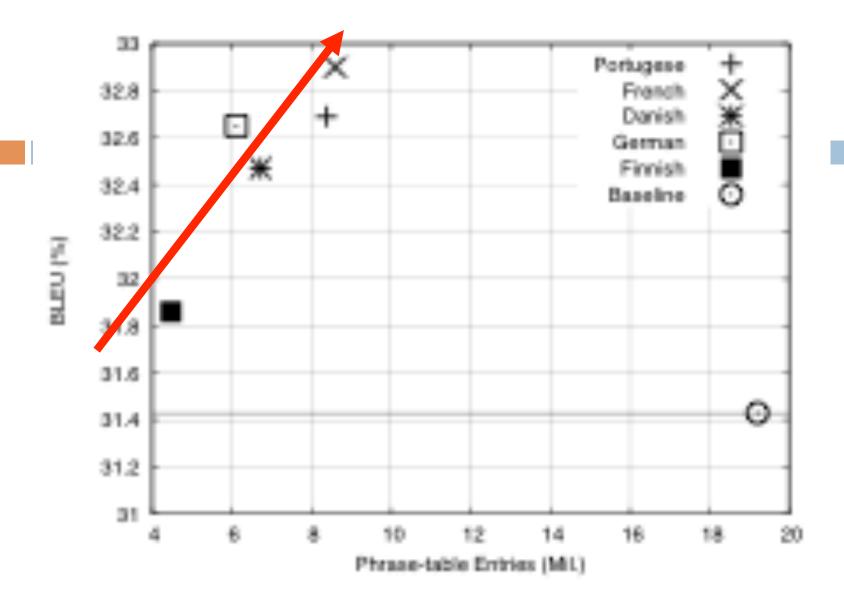


Figure 2: Clustering of bridge languages

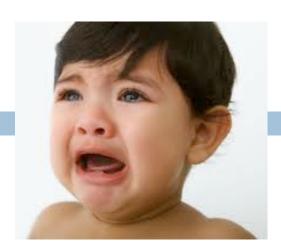

Further Research

Figure 3: Combining probability-based filtering

Further Research

□ German => English

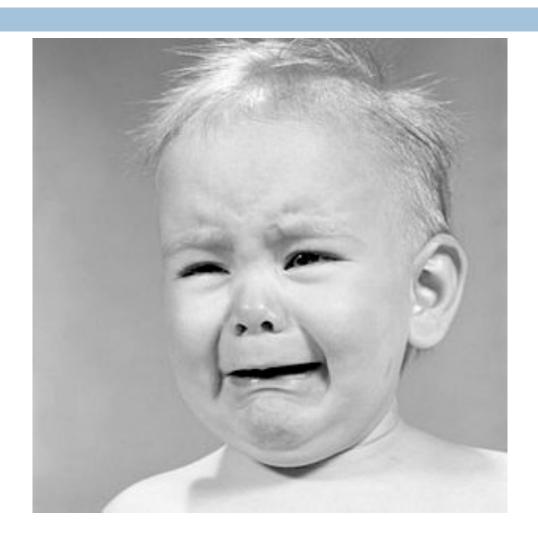

Bridge	EP-40		EP-50		
_	5.1G	26.92	6.5G	27.23	
Dutch	562M	27.11	1.3G	28.14	
Spanish	3.0G	27.28	3.6G	28.09	
Danish	505M	28.04	780M	28.21	

Table 7: Filtered German-English systems (Size and BLEU)

Problems / Conclusion

- Throwing away a lot of data (94%)
- Picking a bridge language (sometimes)
- Limitations of data set (Arabic? Chinese?)
- Overall, great!

Thanks!

