
CS311 - Assignment 4

Part 1, Due: Thursday, March 14 by 6pm

Part 2, Due: Friday, March 22 by 6pm

http://xkcd.com/795/

The purpose of this assignment is to program a simple Bayesian classifier: you will implement a
Naive Bayes Classifier that analyzes a number of text classification tasks. You may, and I would
encourage you to, work in pairs on this assignment if you’d like. As always, read through the entire
document before starting.

Overview

Recall that a Naive Bayes classifier is just a simple Bayes net that has one root node with some
number of children. The children are connected only to the root, not to each other, as in the
network shown below:

1

This is the Naive Bayes network we will use for this assignment. In this network, all variables
are boolean. The variable “Positive” represents whether the document is a positive review
(Positive= false means the document is a negative review), and the variables “word1, word2,
..., wordn” represent the presence or absence of different words in a document.

The basic idea is that certain words are more likely to occur in postive documents, while others are
more likely to occur in negatives ones. However, the Naive Bayes assumption we make is that once
we know whether the document is positive or negative, the occurance of the words in the document
become independent from one another (this of course is not true, but works reasonably well in
practice).

Your task in this assignment will be to learn then apply the probabilities for the network above for
a few different problem domains, e.g. p(Positive) and p(wordi|Positive) for i = 1 to n.

Data

We have three different data sets we’ll be playing with (two required and a third, optional):

• Reviews: This data set consists of approximately 14K reviews collected from
www.rateitall.com. The reviews come from a variety of domains including movies, music,
books, and politicians. The actual data has ratings from 1 to 5, but I have cleaned these
up and left only 1s and 5s, denoted those with a 5 score as “positive” and those with a 1
as “negative”, resulting in a binary sentiment prediction task. The data resides in the file
movies.data

• UseNet posts: Obtained from
http://www.cs.umass.edu/∼mccallum/code-data.html, this data set consists of approxi-
mately 75K UseNet articles from four discussion groups for simulated auto racing, simulated
aviation, real autos and real aviation. I have created two binary classification tasks from this
data set. sraa.auto aviation.data has documents labeled with whether they are related
to auto or aviation. sraa.real sim.data has documents labeled with whether they are dis-
cussions related to real autos/aviation or simulations (e.g. computer simulators). Notice that
these two data sets contain the same articles, they just have different labels depending on the
task.

• 20 Newsgroups: Both of the above data sets are binary classification problems. We can
also classify between more than two classes (picking the most probable under the models).

2

For extra credit, you can implement a classifier that handles multiple classes. This data set
was obtained from http://people.csail.mit.edu/jrennie/maintain.html and consists of
newsgroup postings on 20 different topics. The data resides in the files 20news.data.

Getting Started

Because of the size of the data I have put all of the starter code and data on the CS file system at:

/home/dkauchak/PUBLIC/cs311/assign4/

I have provided you with two python files to get you started:

• DataReader.py: This file contains some basic functionality for reading and processing the
data files. To read the documents from a data file, create a new DataReader and iterate over
it:

from DataReader import *

reader = DataReader(dataFile)

for label, tokens in reader:

print label

print tokens

Notice that tokens is a list of words (i.e. strings).

Also in this file are two other functions that could be useful. tokenize takes a string and
returns a list containing the words in that string (you probably won’t need this, but just in
case). split takes a data file and an output label and splits the data with 80% going into a
training file, 10% into a development file and 10% a test file. This will prove useful when you
start trying to evaluate your system.

• BayesClassifier.py: This contains some basic starter code to get you going.

1 Part 1: Getting your hands dirty

In addition to the “real” data sets, I’ve also put together a simple test data set that’s useful for
doing some checking if you’re on the right path. To get you started, I’m asking you to manually
calculate the probabilities for this data set. This will make sure you understand what you’re doing
and will also be useful for testing the correctness of your code.

1. First, read through the rest of this document (in particular, the “Training” section) to make
sure you understand how to calculate probabilities, etc.

3

2. Second, look at the file in the data directory of the assignment starter named simple.data.
In there are 5 documents (3 negative and 3 positive). Manually calculate the Naive Bayes
classifier probabilities listed below and put these in a text file (note these are all of the
probabilities your model would calculate):

p(positive) =

p(negative) =

p(I | positive) =

p(hated | positive) =

p(that | positive) =

p(movie | positive) =

p(loved | positive) =

p(it | positive) =

p(I | negative) =

p(hated | negative) =

p(that | negative) =

p(movie | negative) =

p(loved | negative) =

p(it | negative) =

3. Third, calculate manually what the probability “score” (i.e. p(features|positive)p(positive))
of the following two sentences would be for the positive class:

I loved it

I thought I hated it but loved it

and add these to your text file. Note these are not true probabilities since we are not nor-
malizing by p(features).

4. Fourth, submit this text file as assignment number 4a via the submission script.

I will post the correct probabilities on Friday morning so that you can use them to check your
answers. Once you get training and classifying working, you can train your system on this “simple”
data, print out the counts/probabilities and then also test the probability of your sentence and
make sure that works as well.

I know this may feel a bit tedious but I promise you having an example that you understand and
can use for testing will help save you time next week.

2 Part 2: Ready, set, implement!

2.1 Training

Now that you’re familiar with the data and starter code, your next task is to “train” the classifier.
We will use maximum likelihood (ML) parameter estimation to estimate each parameter in the

4

Bayes net. To simplify the notation below, I’ll assume we’re looking at the task of sentiment analysis
with two classes, positive and negative, though the training will be general regardless. As a
reminder, the parameters that we need to estimate are all of the conditional and prior probabilities
for the network:

- p(positive) and p(negative): The prior probabilities of the classes

- p(wordi| positive) and p(wordi| negative): The conditional probability that wordi appears,
given that a document has a particular label/class, for each wordi.

(For the 20 newsgroup data set, you would have 20 different labels and therefore 20 sets of prior
probabilities and conditional probabilities!)

Recall from class that the ML estimate for these parameters are:

p(positive) = # of positive docs / total number of docs

p(wordi| positive) = (# wordi in positive docs) / (# words in all positive docs)

When training the system, instead of storing the actual parameter estimates, just calculate the
frequencies needed to calculate the parameters on the fly. In calculating these parameter estimates,
you will need to keep track of a few things:

• how often each word appears in the positive documents

• how often each word appears in the negative documents

• how many positive documents there are

• how many negative documents there are

For the word occurrences, there are two different types of tallies that are commonly used: presence
or frequency. Presence refers to the number of documents in the training data that the feature
occurs in (A word either occurs or it doesn’t in a document. If it appears multiple times, it still
just counts as occurring.) while frequency refers to the number of times that the feature occurs
in the training set (i.e. if it occurs three times in one document, that counts as three). We will use
frequency counts for this part of the assignment to estimate parameters, but you might experiment
in part 4 with using presence counts instead.

Due to the size of the data sets, we don’t want to have to read through all of the data every time
we want to classify a new document. Instead, we would like to pass through all the documents
once, generate the counts above and save these.

Often, we would use a database for large projects, however, since our data sets are modest size we’ll
instead use a handy Python utility called pickle. Using pickle, one can write a data structure to a
file, and then load it back into memory later. In particular, you’ll have one or more dictionaries (like
hashtables) holding the above counts. Since these dictionaries are time consuming to construct, it

5

is useful to only calculate them once, pickle them, and then load them into memory the next time
you need to use them.

To do this, the following steps would be a good approach:

1. Start with the supplied BayesClassifier.py file.

2. Create any dictionaries, etc. in the init method that you will need to store your counts.

3. Fill in the details of the train method. This method should keep track of the counts based
on the file provided. You’ll probably need to use the DataReader class here. Do not change
the input parameters!

4. Fill in the details of the save method. This method should use pickle to save all of your
dictionaries, etc. to a file. You can call p.dump in sequence to write multiple objects to a
single file. Again, do not change the parameters.

5. Fill in the details of the load method. This method will again use pickle to load into the
current object all of the stored dictionaries, etc. You should call u.load for each variable you
dumped in save, in the same order and save it back to this object.

See the python documentation on pickle for more information.

2.2 Classifying

At this point, you now have a trained model/set of counts and are ready to classify. Given a piece
of text, the goal is for your system to output the correct document class (e.g. positive or negative).
In particular, you’ll calculate the conditional probability of each document class given the features
in the target document (e.g. p(positive|word1, word2, ..., wordn)) and return the document class
of the highest probability.

To classify a document, you need to find:

p(positive|word1, word2, ..., wordk)
(probability the document is positive)

and:

p(negative|word1, word2, ..., wordk)
(probability that the document is negative)

The Naive Bayes classifier calculates this probability as the product of the probability of each fea-
ture (in this case our word occurrences) given the value of the class label:

p(positive|word1, word2, ..., wordk) = α p(positive) p(word1| positive) ... p(wordk|positive)

Note, however, that this probability ignores some information that we are given. In particular, it
only considers words that you HAVE seen in the document, and it does not factor in the words
that appearn in the Bayes net that you HAVE NOT seen. What we’re really after is:

6

p(positive|word1, word2, ..., wordk, ¬wordk+1, ..., ¬wordn) =
α p(positive) p(word1| positive) ... p(wordk|positive) p(¬wordk+1|positive) ... p(¬wordn|positive)

where wordk+1,...,wordn are words that are in the full Bayes Net (i.e., words seen in some document
in the training set), but do not happen to appear in this document.

We’ll use the simplification above and only take into account the words that did occur.
Effectively this simplification states that we have not observed wordk+1,...,wordn, i.e., we haven’t
seen them, but we haven’t NOT seen them either.

Reflection question #1: In your “reflection evaluation.txt” file, answer the following question:
Give at least two reasons why we ignore words we have not seen in the document when classifying
the document (i.e., why not use the full specification that includes words that are NOT in the
document?).

Furthermore, we don’t really care about α, since it is the same for p(positive|[words in doc])
and p(negative|[words in doc]). Thus, you can ignore it and just compare the unnormalized
probabilities for positive and negative directly (i.e. which one is larger)

You will find that two problems will arise in building this basic classifier. I suggest that you build
the classifier first, and then address the problems:

• Underflow – Because you are multiplying so many fractions, the product becomes too small
to be represented. The standard solution to this problem is to calculate the sum of the logs
of the probabilities, as opposed to the product of the probabilities themselves.

• Smoothing – This problem is more subtle as it wont produce a bug, but will throw off your
calculations. Suppose a feature (word) f does not occur at all in the training data for negative
(or positive) documents. Then our estimate for p(f | negative) = 0. This one missing word
essentially negates the influence of all other words in the document! One word should not be
given that much power in our decisions. See our class notes for a discussion of smoothing. A
popular solution is “add one smoothing”, setting λ = 1, though this tends to be too large in
practice. This is one thing you can experiment with when developing your “best” classifier.

Fill in the details for the classify method that takes a string as input (note you’ll probably need
to use the tokenize method here). The function should return the label that you think the text
should have (e.g. positive vs. negative in the reviews case).

If you’ve followed my instructions, you should now have a classifier that can be used in the following
manner:

>>> from BayesClassifier import *

>>> bc = BayesClassifier()

>>> bc.train("movies.data")

>>> bc.classify("I love my AI class!")

positive

7

Reflection Question #2: Take a moment to celebrate your success (yay!). Try out your
classifier on a few sentences and see when it performs well and when it performs poorly. What
are three examples of sentences (of any length of text) on which you think your classifier failed?
For each example, why do you think it failed? What was hard about the target text? Write
your answers to these questions in your file “reflection evaluation.txt”.

2.3 Improve your Classifier

Hopefully in the previous part, you probably realized some ways in which you can improve upon
your system. In this part, I would like you to be creative and implement these ideas and build
a “best” classifier. You may explore any improvements you would like to improve you system
including smoothing techniques, choice of features or using frequency vs. presence probabilities.

Because much of the research with respect to Nave Bayes Classifiers is the choice of features you
must explore at least two other features for your “improved” Naive Bayes classifier. So far, you’ve
only used “unigrams” (i.e. single words) as features, though many other features could be used
such as “bigrams” (i.e. two word phrases), the length of the document, or amount of capitalization
or punctuation used.

Time permitting, we’ll hold a competition in class to see whose classifier does best on a set of
documents that I’ll choose randomly. The outcome of this competition will not have an impact on
your grade.

For this part, make a copy of your python file and add the word “Best” to the end of the
filename. This will make it easier for us to grade these parts separately.

Reflection #3: Briefly explain what changes you made to your improved classifier. Write your
answers to these questions in your file reflection evaluation.txt.

2.4 Evaluation

Now that you have a working system, you can evaluate how well your system works. To do this,
you should split the data into train and test using the split function. You should never train and
test on the same data! If you want to be extra legitimate, when you’re developing your approach,
you use a development data set for testing incremental improvements and only when you’re finally
done, do you use the test data set.

We’ll look at two different evaluation measures:

• Accuracy: number correct / total

• Precision: number correctly classified as positive / total classified as positive (similarly you
can calculate the precision for other classes, such as negative, etc.). Measures how good we
are at predicted one class.

In a separate file, write a few functions that allow you to calculate these measures on the test
data and evaluate your classifier. Notice that only accuracy is measured over all classes while the

8

precisions is described for each class. You will not submit this file, but you’ll use it to evaluate how
well you’re doing.

Reflection #4: Evaluate your old system and your improved.

Include one or more tables summarizing your results and write a paragraph or two analyz-
ing them. This will be good practice for when you’re working on your own research project.
Specifically:

• Compare your base system and your best classifier on the reviews task. How do they
compare? Any differences? Do you think your improvements had a significant impact.

• Now compare your systems on both of the UseNet tasks (real vs. simulated and auto vs.
aviation). What do your results imply about the difficulty of these tasks? Why do you
think one task is harder/easier than the other? Did your improved system have a larger
impact on any one of the data sets? Compare both the UseNet tasks as well as the review
tasks.

• Another thing you might investigate (though it’s not required) is how the amount of
training data affects your performance.

Include the information above in your file reflection evaluation.txt.

3 Extra Credit: Multi-class classification

This portion is optional. The 20 newsgroups data set includes 20 classes instead of just two. Modify
your code to support multiple classes. One way to do this is instead of having separate dictionaries
for each class, use one dictionary keyed off of the label/class whose value is another dictionary with
the word counts. In your classify method, you’ll then need to calculate log probabilities for all of
these classes and pick the label with the largest of all 20.

If you implement this, also include a section in your writeup discussing your results.

When you’re done

When you’re all done, follow the directions on the course web page for submitting your work. Make
sure that your code compiles, that your files are named as specified and that all your functions
have the same name and number of parameters.

If you worked with a partner, put both people’s last names on the submitted directory, but only
submit one copy.

What to submit

• BayesClassifier.py supporting the functionality described above.

9

• BayesClassifierBest.py which includes your improved (hopefully) version of the classifier.

• reflection evaluation.txt which should contain your answers to all four reflections (make
it clear where your response to each question is), a section showing your evaluation results
and analyzing them and a section describing future improvements.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each file

• Each class and method should have a short “docstring”

• If anything is complicated, put a short note in there to help the graders out if there are any
issues.

There are many possible ways to approach this problem, which makes code style and comments
very important here so that the grader and I can understand what you did. For this reason, you
will lose points for poorly commented or poorly organized code.

Grading

Part points

Part 1 10
train 15
load/save 5
classify 20
improve 10
evaluation/write-up 30

style/commenting 10

extra credit 5

total 100 + 5 extra

10

