
1

http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/Web/People/biorobotics/projects/
modsnake/index.html

CMU Snake Robot

Informed Search

CS311
David Kauchak

Spring 2013

Some material borrowed from :
Sara Owsley Sood and others

Administrative
•  Assignment 1 was due before class

–  how’d it go?
–  come talk to me earlier than later!

•  Written problems?
•  Assignment 2

–  Mancala (game playing)
–  will be out later today or tomorrow
–  < 2 weeks to complete
–  Can work with a partner
–  tournament!

•  Lectures slides posted on the course web page

Uninformed search strategies
Uninformed search strategies use only the
information available in the problem definition

–  Breadth-first search
–  Uniform-cost search
–  Depth-first search
–  Depth-limited search
–  Iterative deepening search

2

Summary of algorithms A few subtleties…

What is the difference between
a state and a node?

Be Careful! states vs. nodes
A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

Repeated states

def treeSearch(start):
 add start to the frontier
 while frontier isn’t empty:
 get the next node from the frontier

 if node contains goal state:
 return solution
 else:
 expand node and add resulting nodes to frontier

What is the impact of repeated states?

1

4

6 5 2

7

8 3 1

4

6 5 2

7

8 3 1

4

6 5 2

7

8

3

3

Can make problems seem harder

What will this
look like for
treeSearch?

…
Solution?

Graph search
Keep track of nodes that have been visited (explored)

Only add nodes to the frontier if their state has not been
seen before

def graphSearch(start):
 add start to the frontier
 set explored to empty
 while frontier isn’t empty:
 get the next node from the frontier

 if node contains goal state:
 return solution
 else:
 add node to explored set
 expand node and add resulting nodes to frontier,

 if they are not in frontier or explored

Graph search implications?
We’re keeping track of all of the states that we’ve
previously seen

For problems with lots of repeated states, this is a huge
time savings

The tradeoff is that we blow-up the memory usage

–  Space graphDFS?
•  O(bm)

Something to think about, but in practice, we often just use
the tree approach

8-puzzle revisited
The average depth of a solution for an 8-puzzle is 22 moves

What do you think the average branching factor is?

–  ~3 (center square has 4 options, corners have 2 and edges have 3)

An exhaustive search would require ~322 = 3.1 x 1010 states

–  BFS: 10 terabytes of memory
–  DFS: 8 hours (assuming one million nodes/second)
–  IDS: ~9 hours

Can we do better?

1

4

6 5 2

7

8 3

4

from: Claremont to:Rowland Heights

What would the search algorithms do?

from: Claremont to:Rowland Heights

DFS

from: Claremont to:Rowland Heights

BFS and IDS

from: Claremont to:Rowland Heights
We’d like to bias search towards the actual solution

Ideas?

5

Informed search
Order the frontier based on some knowledge of the world that
estimates how “good” a state is

–  f(n) is called an evaluation function

Best-first search

–  rank the frontier based on f(n)
–  take the most desirable state in the frontier first
–  different approaches depending on how we define f(n)

def treeSearch(start):
 add start to the frontier
 while frontier isn’t empty:
 get the next node from the frontier

 if node contains goal state:
 return solution
 else:
 expand node and add resulting nodes to frontier

Heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek heuriskein to
discover.] involving or serving as an aid to learning, discovery,
or problem-solving by experimental and especially trial-and-
error methods

The Free On-line Dictionary of Computing (2/19/13)

heuristic 1. Of or relating to a usually speculative formulation
serving as a guide in the investigation or solution of a problem:
"The historian discovers the past by the judicious use of such a
heuristic device as the 'ideal type'" (Karl J. Weintraub).

Heuristic function: h(n)

An estimate of how close the node is to a goal

Uses domain-specific knowledge

Examples

–  Map path finding?
•  straight-line distance from the node to the goal (“as the crow flies”)

–  8-puzzle?
•  how many tiles are out of place

–  Missionaries and cannibals?
•  number of people on the starting bank

Greedy best-first search
f(n) = h(n)

rank nodes by how close we think they are to the goal

Arad to Bucharest

6

Greedy best-first search Greedy best-first search

Greedy best-first search Greedy best-first search

Is this right/
optimal?

7

Problems with greedy best-first search
Time?

–  O(bm) – but can be much faster

Space?

–  O(bm) – have to keep them in memory to rank

Complete?

Problems with greedy best-first search

Complete?
– Graph search, yes
– Tree search, no

Problems with greedy best-first search

Complete?
– Graph search, yes
– Tree search, no

Problems with greedy best-first search

Optimal?

8

Problems with greedy best-first search

Optimal?
– no, as we just saw in the map example

a

g b

c

d

e

g

h

i

h=2

h=1

h=1

h=1

h=0

h=3

h=1

h=0

Sometimes it’s
too greedy

Shortest path from a to g?

What is the problem?

A* search
Idea:

–  don’t expand paths that are already expensive
–  take into account the path cost!

f(n) = g(n) + h(n)

–  g(n) is the path cost so far
–  h(n) is our estimate of the cost to the goal

f(n) is our estimate of the total path cost to the goal
through n

A* search

a

g b

c

d

e

g

h

i

h=2

h=1

h=1

h=1

h=0

h=3

h=1

h=0

f(n) = ?

f(n) = ?

A* search

a

g b

c

d

e

g

h

i

h=2

h=1

h=1

h=1

h=0

h=3

h=1

h=0

f(n) = 4

f(n) = 5

9

A* search A* search

A* search A* search

10

A* search A* search

Admissible heuristics
A heuristic function is admissible if it never overestimates

–  if h*(n) is the actual distance to the goal
–  h(n) ≤ h*(n)

An admissible heuristic is optimistic (it always thinks the
goal is closer than it actually is)

Is the straight-line distance admissible?

closest to the actual “price”
without going over

A* properties
Time?

–  depends on heuristic, but generally exponential
Space?

–  exponential (have to keep all the nodes in memory/frontier)

Complete?

–  YES

Optimal?

–  YES, if the heuristic is admissible
–  Why?

•  If we could overestimate, then we could find (that is remove from the queue)
a goal node that was suboptimal because our estimate for the optimal goal
was too large

11

A point of technicality
Technically if the heuristic isn’t admissible, then the search
algorithm that uses f(n) = g(n) + h(n) is call “Algorithm A”

A* algorithm requires that the heuristic is admissible

That said, you’ll often hear the later referred to as A*

Algorithm A is not optimal

Admissible heuristics

8-puzzle

1

4

6 5 2

7

8 3 1

4

3 6 7

8

5 2

4 3

6 7 8

5

2 1

goal

Admissible heuristics

8-puzzle
– h1(n) = number of misplaced tiles?
– h2(n) = manhattan distance?

1

4

6 5 2

7

8 3 1

4

3 6 7

8

5 2

4 3

6 7 8

5

2 1

goal

h1 = 7
h2 = 12

h1 = 8
h2 = 8

admissible?

Admissible heuristics

8-puzzle
– h1(n) = number of misplaced tiles?
– h2(n) = manhattan distance?

1

4

6 5 2

7

8 3 1

4

3 6 7

8

5 2

4 3

6 7 8

5

2 1

goal

h1 = 7
h2 = 12

h1 = 8
h2 = 8

which is better?

12

Dominance
Given two admissible heuristic functions

–  if hi(n) ≥ hj(n) for all n
–  then hi(n) dominates hj(n)

A dominant function is always better. Why?

–  It always give a better (i.e. closer) estimate to the actual path
cost, without going over

What about?

–  h1(n) = number of misplaced tiles
–  h2(n) = manhattan distance

Dominance

h2(n) dominates h1(n)

depth of
solution

IDS A*(h1) A*(h2)

2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 3644035 227 73
14 539 113
16 1301 211
18 3056 363
20 7276 676

average nodes expanded for 8-puzzle problems

Combining heuristics
Sometimes, we have multiple admissible heuristics, but
none dominates

What then?

–  We can take the max of all the heuristics!

Why?

–  Since they’re all admissible, we know none overestimate
–  taking the max gives us a closer/better estimate
–  overall, a better heuristic function

Relaxed problems
A problem with fewer restrictions on the actions is called a relaxed
problem

The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem

8-puzzle: relaxed problems?
If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

13

Using A* in Planning

A
C

B A B C A C
B

C
B
A

B
A

C

B
A
C

B C
A

C
A
B

A
C
B

B
C
A

A B
C

A
B

C

A
B
C

Creating Heuristics

8-Puzzle

N-Queens

Missionaries and Cannibals Remove 5
Sticks

Water Jug Problem

5 2

Route Planning

