http://www.youtube.com/watch?v=LcPWEMwGJVQ

Adversarial Search

CS311
David Kauchak
Spring 2013

Some material borrowed from :
Sara Owsley Sood and others

Admin

» Reading/book?
» Assignment 2
— On the web page
— 3 parts
— Anyone looking for a partner?
— Get started!
» Written assignments
— Make sure to look at them asap!
— Post next written assignment soon

A quick review of search

Rational thinking via search — determine a plan of actions
by searching from starting state to goal state

Uninformed search vs. informed search
— what's the difference?
— what are the techniques we've seen?
— pluses and minuses?

Heuristic design
— admissible?
— dominant?

Why should we study games?

Clear success criteria
Important historically for Al
Fun ©

Good application of search

— hard problems (chess 35'% nodes in search tree, 104° legal
states)

Some real-world problems fit this model
— game theory (economics)
— multi-agent problems

Types of games

What are some of the games
you’'ve played?

Types of games: game properties

single-player vs. 2-player vs. multiplayer

Fully observable (perfect information) vs. partially
observable

Discrete vs. continuous
real-time vs. turn-based

deterministic vs. non-deterministic (chance)

Strategic thinking = intelligence

For reasons previously stated, two-player games have
been a focus of Al since its inception...

Begs the question: Is strategic
thinking the same as intelligence?

Strategic thinking z intelligence

Humans and computers have different relative strengths in
these games:

computers

good at looking ahead in
the game to find winning
combinations of moves

humans

good at evaluating the
strength of a board
for a player

Strategic thinking z intelligence

How could you figure out how humans
approach playing chess?

humans

good at evaluating the
strength of a board
for a player

How humans play games...

An experiment (by deGroot) was performed
in which chess positions were shown to nhovice
and expert players... EN:HEE =

- experts could reconstruct these perfectly
- novice players did far worse...

How humans play games...

An experiment (by deGroot) was performed
and expert players...

- experts could reconstruct these perfectly
- novice players did far worse...

Random chess positions (not legal
ones) were then shown to the two
groups

- experts and novices did just as
badly at reconstructing them!

People are still working on this problem... Tic Tac Toe as search

of eye its (pr ion time = 5

S|

2

Master's eye movements Novice's eye movements

How can we pose this as a
search problem?

http://people.brunel.ac.uk/~hsstffg/frg-research/chess_expertise/

Tic Tac Toe as search Tic Tac Toe as search
X
X X X| O X (0] X
)
X

Tic Tac Toe as search

Eventually, we'll get to a leaf

x| x|o] [o] x]o x| x]o
x[o[o] [X[x[o o| x| o
Xx|0[X]| [x[O[X x| |0
+1 0 -1

The UTILITY of a state tells us how good the states are.

Defining the problem

INITIAL STATE — board position and the player whose turn it is

SUCCESSOR FUNCTION- returns a list of (move, next state) pairs
TERMINAL TEST - is game over? Are we in a terminal state?

UTILITY FUNCTION - (objective or payoff func) gives a numeric
value for terminal states (ie — chess — win/lose/draw +1/-1/0,
backgammon +192 to -192)

Games’ Branching Factors

On average, there are ~35 possible moves that a chess player

can make from any board configuration... 0 Ply
1Ply «‘»\
AAAMAAN

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4
Hydra at Connect Four 7
tﬁz‘e " Checkers 10
United Othello 30
Arab

Chess 35

Emirates...

Go 300

Games’ Branching Factors

* On average, there are ~35 possible moves that a chess player
can make from any board configuration... 0 Ply

A ﬂl\\‘ﬂkyﬂmk\ A

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4
Connect Four 7
Boundaries for Checkers 10

qualitatively Othello 30

different games... Chess 35
Go 300

Games’ Branching Factors

* On average, there are ~35 possible moves that a chess player
can make from any board configuration... 0 Ply

1Ply

AN

AN

2 Ply

Games vs. search problems?

Branching Factor Estimates
for different two-player games

“solved" games Tic-tac-toe 4
9 Connect Four 7

CHINOOK (2007) T 1 Checkers 10

. Othello 30
computer-dominated | 35
Go 300

human-dominated

Opponent!
— unpredictable/uncertainty
— deal with opponent strategy

Time limitations
— must make a move in a reasonable amount of time

— can’t always look to the end

Path costs
— not about moves, but about UTILITY of the resulting
state/winning

Back to Tic Tac TOe

X’s turn

O’s turn

I'm X, what will ‘O’ do?

X| X|0O
O| X|O
O’s turn ‘}\
X| X|0O X[X|O
O| X|O Oo| X|O
X| O X 0

Minimizing risk

Optimal Strategy

The computer doesn’'t know what move O (the opponent)
will make

It can assume, though, that it will try and make the best
move possible

Even if O actually makes a different move, we're no
worse off

X| X] O
o| X| o

X
X| X
o| X

X| O X

x
X

(o] [e]
(o] [

[e]

An Optimal Strategy is one that is at least as
good as any other, no matter what the
opponent does

— If there's a way to force the win, it will

— Will only lose if there's no other option

How can X play optimally?

How can X play optimally?

[X[o[x]
TERMINAL | [O[X|
ol]

utility -1 [4

Start from the leaves and propagate the utility up:
— if X’s turn, pick the move that maximizes the utility
— if O’s turn, pick the move that minimizes the utility

Is this optimal?

Minimax Algorithm: An Optimal Strategy

minimax(state) =

- if state is a terminal state
Utility(state)

- if MAX’s turn
return the maximum of minimax(...)
on all successors of current state

- if MIN’s turn
return the minimum of minimax(...)
on all successors to current state

» Uses recursion to compute the “value” of each state

* Proceeds to the leaves, then the values are “backed up’
through the tree as the recursion unwinds

* What type of search is this?

* What does this assume about how MIN will play? What
if this isn’t true?

def minimax(state):
for all actions a in actions(state):
return the a with the /argest minValue(result(state,a))

def maxValue(state):

if state is terminal:
return utility(state)

else:
return the a with the /argest minValue(result(state,a))
value = -
for all actions a in actions(state):

value = max(value, minValue(result(state,a))

return value

def minValue(state):

if state is terminal:
return utility(state)

else:
return the a with the smallest maxValue(result(state,a))
value = +«
for all actions a in actions(state):

value = min(value, maxValue(result(state,a))

return value

ME:
Assume the
opponent
will try and
minimize
value,
maximize
my move

OPPONENT:
Assume | will
try and
maximize my
value,
minimize his/
her move

Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

What move should | take?

Baby Nim

il

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

W =10
A\ =10 MAX

N

MIN wins/
MAX loses

Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

W - 10
& =10 MAX/\

Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

W -0
AN =10 A%

N N
MIN wins/ MIN wins/
MAX loses MAX loses
Baby Nim Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

W -10
A\ =10 MAX

N

MIN wins/
MAX loses

il

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

v =1.0
& =10 MA,

N

MIN wins/
MAX loses

Baby Nim Baby Nim

11l 111 ———

Take 1 or 2 at each turn Take 1 or 2 at each turn
Goal: take the last match Goal: take the last match

MAX wins

~
W 10
& =1.0 MAX

MAX wins

-~
W -0
& =-1.0 MAK ‘

N N
MIN wins/ MIN wins/
MAX loses MAX loses
Baby Nim Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

il

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

e
v =1.0
& -0 MAX; ‘_A

N

MIN wins/
MAX loses

MAX wins

-
W =10
AN =10 MAKS ‘

N

MIN wins/
MAX loses

Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

~
W 10

&=-1.0 MA I

Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

-
W 10

AN =10 MA
N N
MIN wins/ MIN wins/
MAX loses MAX loses
Baby Nim Baby Nim

11l

Take 1 or 2 at each turn
Goal: take the last match

MAX wins

~
W -10

& =10 MAX; "A

N
MIN wins/
MAX loses

il

Take 1 or 2 at each turn
Goal: take the last match

o could still win,
but not optimal!!!

MAX wins

-~
W =10
AN =10

N

MIN wins/
MAX loses

11

Minimax example 2

Which move should be made: A;, A, or A;?

Minimax example 2

MAX

MIN

Properties of minimax

Minimax is optimal!

Are we done?
— For chess, b = 35, d =100 for reasonable games - exact
solution completely infeasible
— Is minimax feasible for Mancala or Tic Tac Toe?
+ Mancala: 6 possible moves. average depth of 40, so 64° which is on
the edge
« Tic Tac Toe: branching factor of 4 (on average) and depth of 9...
yes!

Ideas?
— pruning!
— improved state utility/evaluation functions

Pruning: do we have to traverse the whole tree?

MAX

MIN

12

Pruning: do we have to traverse the whole tree? Minimax example 2

Minimax example 2 Minimax example 2

MAX

Any others if we continue?

Minimax example 2

MAX

Alpha-Beta pruning

An optimal pruning strategy

— only prunes paths that are suboptimal (i.e. wouldn’t be
chosen by an optimal playing player)
— returns the same result as minimax, but faster

As we go, keep track of the best and worst along a
path

— alpha = best choice we’ve found so far for MAX

— beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

alpha = best choice we’ve found so far for MAX

Using alpha and beta to prune:
— We’re examining MIN’s options for a ply
— To do this, we're examining all possible moves for MAX. If we
find a value for one of MAX’s moves that is less than alpha,
return. (MIN could do better down this path)

MAX return if any < alpha

Alpha-Beta pruning

beta = best choice we’ve found so far for MIN

Using alpha and beta to prune:
— We’re examining MAX’s options for a ply
— To do this, we're examining all possible moves for MIN. If we
find a value for one of MIN’s possible moves that is greater than
beta, return. (MIN won’t end up down here)

MAX

MIN return if any > beta

14

Alpha-Beta pruning

Do DFS until we reach a leaf:

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

What do we know?

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

What do we know?

Alpha-Beta pruning

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

15

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

What do we know?

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

What do we know?

Alpha-Beta pruning

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

[3, +0]

[3.3]

16

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

What do we know?

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

Prune!

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

[3,+0] What do we know?

Alpha-Beta pruning

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

17

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

[3, 14] >3 What do we know?

Alpha-Beta pruning

alpha = best choice we've found so far for MAX

beta = best choice we've found so far for MIN

Alpha-Beta pruning

alpha = best choice we've found so far for MAX
beta = best choice we've found so far for MIN

[3, 14] >3 What do we know?

Alpha-Beta pruning

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

18

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

def maxValue(state, alpha, beta):
if state is terminal:
return utility(state)
else:
value = -
for all actions a in actions(state):
value = max(value, minValue(result(state,a), alpha, beta)
if value >= beta:
return value # prune!
alpha = max(alpha, value) # update alpha
return value

We’re making a decision for MAX.

» When considering MIN'’s choices, if we find a value that is greater
than beta, stop, because MIN won’t make this choice

« if we find a better path than alpha, update alpha

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

def minValue(state, alpha, beta):
if state is terminal:
return utility(state)
else:
value = +w
for all actions a in actions(state):
value = min(value, maxValue(result(state,a), alpha, beta)
if value <= alpha:
return value # prune!
beta = min(beta, value) # update alpha
return value

We’re making a decision for MIN.

» When considering MAX’s choices, if we find a value that is less
than alpha, stop, because MAX won’t make this choice

« if we find a better path than beta for MIN, update beta

Baby NIM2: take 1, 2 or 3 sticks

®

Effectiveness of pruning

Notice that as we gain more information
about the state of things, we’re more likely to
prune

What affects the performance of pruning?
— key: which order we visit the states
—can try and order them so as to improve
pruning

19

Effectiveness of pruning

If perfect state ordering:
— O(b™) becomes O(b™?2)
— We can solve a tree twice as deep!

Random order:
— O(b™) becomes O(b3™4)
— still pretty good

For chess using a basic ordering
— Within a factor of 2 of O(b™2)

20

