
2/26/16	

1	

CFGs
David Kauchak
CS30 – Spring 2016

Grammars

What is a grammar?

Grammars

Language view:
A grammar is a set of structural rules that govern
the composition of sentences, phrases and words.

Computational view:
A grammar (often called a “formal grammar”) is a
set of rules that describe what strings are valid in a
formal language.

Grammars

What types of (formal) grammars have you heard
of before?

Lots of different kinds of grammars:

!  regular
! context-free
! context-sensitive
!  recursively enumerable
!  transformation grammars

2/26/16	

2	

Context Free Grammars (CFG)

How many people have heard of them?

What do you know about them?

Where are they used?

CFG production rules

S → NP VP S → NP VP

left hand side
(single symbol)

right hand side
(one or more symbols)

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

S

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

S

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

2/26/16	

3	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

2/26/16	

4	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

No more rules apply, so we’re done!

2/26/16	

5	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

Is this the only string that can be derived?

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really, B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really, really, B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

I really, really, … like cs

Grammars describe a language, i.e. the
strings (aka sentences) that are part of
that language

2/26/16	

6	

CFGs formally

G = (NT, T, P, S)

NT: finite set of nonterminal symbols

T: finite set of terminal symbols, NT and T are disjoint

P: finite set of productions of the form

A → α, A ∈ NT and α ∈ (T ∪ NT)*

S ∈ NT: start symbol

What language does this represent?

S → a S
S → E
E → b E
E → b

What language does this represent?

S → aS
S → E
E → bE
E → b

S
Two options

What language does this represent?

S → aS
S → E
E → bE
E → b

aS

S

2/26/16	

7	

What language does this represent?

S → aS
S → E
E → bE
E → b

aaS

aS

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaS

aaS

- Can do this as many times as we want
- Keeps adding more a’s to the front

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaE

aaaS

Eventually, apply second rule

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaE

Two options

2/26/16	

8	

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaE

aaabE

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabE

aaabbE

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabbE

aaabbbE

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabbE

aaabb…bE

- Can do this as many times as we want
- Keeps adding more b’s to the end

2/26/16	

9	

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabb…bE

aaabb…bb

Eventually, apply second rule

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabb…bE

aaabb…bb

Grammar represents all strings with zero or more
a’s followed by one or more b’s

