ENCRYPTION TAKE 2:
PRACTICAL DETAILS

3/24/16

Admin

Assignment 6

Midterm reviews Tue & Wed

o Will post sample questions soon

Assignment 7

Office hours end today at 3:40 (instead of 4)

Public key encryption

| like I like
bananas bananas

S

abpssow jdAious
decrypt message

send encrypted message
YN
s

-~

(g

\'b B
0;\}\5
-

1

RSA public key encryption

Choose a bit-length k

Choose two primes p and g which can be represented with at most k
bits

Let n = pg and ¢(n) = (p-1)(g-1)

Find d such that O < d < n and ged(d,q(n)) = 1
Find e such that de mod ¢(n) = 1

private key = (d,n) and public key = (e, n)

encrypt(m) = m® mod n decrypt(z) = z¢ mod n

3/24/16

Cracking RSA

Choose a bit-length k

Choose two primes p and ¢ which can be represented with at most k bits
Let n = pg and ¢(n) = (p-1)(g-1)

Find d such that 0 < d < n and ged(d,¢(n)) = 1

Find e such that de mod ¢(n) = 1

private key = (d,n) and public key = (e, n)

encrypt(m) = m® mod n decrypt(z) = z¢ mod n

Say | maliciously intercept an encrypted message.
How could | decrypt it? (Note, you can also assume that we have
the public key (e, n).)

Cracking RSA

encrypt(m) = m® mod n
Idea 1: undo the mod operation , i.e. mod™' function

If we knew m® and e, we could figure out m

Do you think this is possible?

Cracking RSA

encrypt(m) = m® mod n
Idea 1: undo the mod operation , i.e. mod™' function

If we knew m® and e, we could figure out m

Generally, no, if we don’t know anything about the message.

The challenge is that the mod operator maps many, many
numbers to a single value.

Security of RSA

p: prime number @(n) = (p-1)(g-1)
: prime number d: 0<d<nandged(d,pn) =1
n =pq e: demod @(n) =1

private key (d, n) public key (e, n)

Assuming you can't break the encryption itself (i.e. you cannot
decrypt an encrypted message without the private key)

How else might you try and figure out the encrypted message?

3/24/16

Security of RSA

@(n) = (p-1)(g-1)
¢: prime number d: 0<d<nandged(d,@n) =1
n =pq e: demod @(n) =1

p: prime number

private key (d, n) publickey (e, n)
Assuming you can’t break the encryption itself (i.e. you cannot
decrypt an encrypted message without the private key)
Idea 2: Try and figure out the private key!

How would you do this?

Security of RSA

¢(n) = (p-1)(g-1)
: prime number d: 0<d<nandged(d,pn) =1
n =pq e: demod @(n) =1

p: prime number

private key (d, n) public key (e, n)

Already know e and n.

If we could figure out p and g, then we could figure out the
rest (i.e. d)!

Security of RSA

@(n) = (p-1)(g-1)
¢: prime number d: 0 <d<nandged(d,@n) =1
n =pq e: demod @(n) =1

p: prime number

private key (d, n) public key (e, n)

How would you do figure out p and g2

Security of RSA

¢(n) = (p-1)(g-1)
: prime number d: 0<d<nandged(d,pn) =1
n =pq e: demod @(n) =1

p: prime number

private key (d, n) public key (e, n)

For every prime p (2,3,5,7 ...):
- Ifnmodp=0thenqg=n/p

Why do we know that this must be p and g2

3/24/16

Security of RSA

p: prime number @(n) = (p-1)(g-1)
¢: prime number d: 0<d<nandged(d,@n) =1
n =pq e: demod @(n) =1

private key (d, n) public key (e, n)

For every prime p (2,3,5,7 ...):
- Ifnmodp=0thenq=n/p

Since p and q are both prime, there are no
other numbers that divide them evenly,
therefore no other numbers divide n evenly

Security of RSA

p: prime number @(n) = (p-1)(g-1)
: prime number d: 0<d<nandged(d,pn) =1
n =pq e: demod @(n) =1

private key (d, n) public key (e, n)

For every number p (2, 3,4,5,6,7 ...):
- Ifnmodp=0thenqg=n/p

How long does this take?
l.e. how many p do we need to check in the worst
case assuming n has k bits?

Security of RSA

p: prime number @(n) = (p-1)(g-1)
¢: prime number d: 0 <d<nandged(d,@n) =1
n =pq e: demod @(n) =1

private key (d, n) public key (e, n)

For every number p (2, 3,4, 5,6,7 ...):
- lfnmodp=0thenq=n/p

With k bits we can represent numbers up to 2%
We only need to count up to sqrt = (2%)1/2
Which is still 2/2

For large k (e.g. 1024) this is a very big number!

Security of RSA

p: prime number @(n) = (p-1)(g-1)
: prime number d: 0<d<nandged(d,pn) =1
n =pq e: demod @(n) =1

private key (d, n) public key (e, n)

For every number p (2, 3,4,5,6,7 ...):
- lfnmodp=0thenqg=n/p

Currently, there are no known “efficient” methods
for factoring a number into it's primes.
This is the key to why RSA works!

3/24/16

Implementing RSA

Choose a bit-length k

For generating the keys, this is the only input the algorithm has

Implementing RSA

2. Choose two primes p and g which can be
represented with at most k bits

Ideas?

2

Finding primes

Choose two primes p and g which can be
represented with at most k bits

Idea: pick a random number and see if it's prime

How do we check if a number is prime?

Finding primes

2. Choose two primes p and g which can be
represented with at most k bits

Idea: pick a random number and see if it's prime

isPrime(num):
fori= 2 ... sqrt(num):
if num % i == 0:

return false
return true

If the number is k bits, how many numbers (worst case) might we
need to examine?

3/24/16

2

Finding primes

Choose two primes p and g which can be
represented with at most k bits

Idea: pick a random number and see if it's prime

- Again: with k bits we can represent numbers up to 2
- Counting up to sqrt = (24)1/2 = 2k/2

Finding primes

Primality test for num:
pick a random number o
perform test(num, a)
if test fails, num is not prime

if test passes, 1/2 chance that num is prime

Does this help us?

Finding primes

Primality test for num:
pick a random number o
perform test(num, a)
if test fails: return false

if test passes: return true

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Finding primes

Primality test for num:
pick a random number o
perform test(num, a)
if test fails: return false

if test passes: return true
0.5 (50%)

Can we do any better?

3/24/16

Finding primes

Primality test for num:
Repeat 2 times:
pick a random number o

perform test(num, a)
- if test fails: return false

return true

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Finding primes

Primality test for num:
pick a random number o
perform test(num, a)
if test fails: return false

if test passes: return true

p(0.25)

¢ Half the time we catch it on the first test

¢ Of the remaining half, again, half (i.e. a quarter
total) we catch it on the second test

* V4 we don't catch it

Finding primes

Primality test for num:
Repeat 3 times:
pick a random number o

perform test(num, a)
- if test fails: return false

return true

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Finding primes

Primality test for num:
Repeat 3 times:
pick a random number o

perform test(num, a)
- if test fails: return false

return true

p(1/8)

3/24/16

Finding primes

Primality test for num:
Repeat m times:
pick a random number o

perform test(num, a)
- if test fails: return false

return true

If num is not prime, what are the chances that we
incorrectly say num is a prime?

Finding primes

Primality test for num:
Repeat m times:
pick a random number o

perform test(num, a)
- if test fails: return false

return true

p(1/2m)

For example, m = 20: p(1,/22°%) = p(1/1,000,000)

Finding primes

Primality test for num:
Repeat m times:
pick a random number o

- perform test(num, a)
- if test fails: return false

return true

Fermat's little theorem: If p is a prime number, then for all
integers a:

a = aP (mod p)

How does this help us?

Finding primes
Fermat's little theorem: If p is a prime number, then for all
integers a:

a = aP (mod p)

test(num, a):
- generate a random number a < p
- check if a®> mod p = a

3/24/16

Implementing RSA

Let n = pg and ¢(n) = (p-1)(g-1)

How do we do this?

5.

Implementing RSA

Find d such that O < d < n and ged(d,@(n)) = 1

Find e such that de mod ¢(n) = 1

How do we do these steps?

Greatest Common Divisor
A useful property:

If two numbers are relatively prime (i.e. gcd(a,b) = 1),
then there exists a ¢ such that

a*cmod b =1

Greatest Common Divisor
A more useful property:

two numbers are relatively prime (i.e. gcd(a,b) = 1)
iff there exists a c such that a™c mod b = 1

What does iff mean?

3/24/16

Greatest Common Divisor
A more useful property:

1. If two numbers are relatively prime (i.e. gcd(a,b) =
1), then there exists a c such that a™c mod b = 1

2. If there exists a c such that a™c mod b = 1, then the
two numbers are relatively prime (i.e. gcd(a,b) = 1)

We’'re going to leverage this second part

I

Implementing RSA

Find d such that O < d < n and ged(d,@(n)) = 1
Find e such that de mod ¢(n) = 1

If there exists a c such that a*c mod b = 1, then the
two numbers are relatively prime (i.e. gcd(a,b) = 1)

To find d and e:

- pick arandomd, 0 <d <n

- try and find an e such that de mod ¢(n) = 1
- if none exists, try another d
- if one exists, we're done!

Modular multiplicative inverse

From Wikipedia, the free encyclopedia

This article needs additional citations for verification. Please help improve this
article by adding citations to reliable sources. Unsourced material may be
challenged and removed. (March 2007)
In modular arithmetic, the modular multiplicative inverse of an integer a modulo m is an integer x such that
ar=1 (mod m).
Thats, it is the multiplicative inverse in the ring of integers modulo m, denoted Z,,,.
Once defined, x may be noted a’l. where the fact that the inversion is m-modular is implicit.

The muttiplicative inverse of a modulo m exists if and only if aand m are coprime (i.e., if gcd(a, m) = 1)1 If the modular
muliplicative inverse of a modulo m exists, the operation of division by amodulo m can be defined as multiplying by the
inverse of a, which is in essence the same concept as division in the field of reals.

Known problem with known solutions

For the assignment, I've provided you with a function:
inversemod

(*

=

inversemod

inversemod : c¢s52int -> cs52int -> cs52int option

10

3/24/16

Option type

Look at option.sml

option type has two constructors:
NONE (representing no value)
SOME v (representing the value v)

case statement

case of
patternl => value
| pattern2 => value

| pattern3 => value

inversemod

(*
* inversemod : cs52int -> c¢s52int -> cs52int option

*

* inversemod u m returns (SOME v) when 0 < v < |m| and uv = 1

* (mod m). The value of v, if it exists, is unique. inversemod u m
* returns NONE if there is no such v.

*

*)

fun inversemod u m =

Signing documents

If a message is encrypted with
the private key how can it be
decrypted?

Hint:

(m®) = me*? = m (mod n)
- encrypt(m, (e, n)) = m® mod n
- decrypt(z, (d, n)) = z% mod n

I like
bananas

encrypt message

(o g

11

3/24/16

Signing documents

(me)d = med = m (mod n)
- encrypt(m, (e, n)) = m® mod n
- decrypt(z, (d, n)) = z¢ mod n

encrypt(m, (d,n)) = mY mod n

decrypt(m? mod n, (e, n)) = (m9)® mod n
= m% mod n
= m* mod n

= m (if m

<n)

Signing documents

What does this do for us?

I like
bananas

encrypt message

(o g

Signing documents

If the message can be
decrypted with the public key
then the sender must have had
the private key

encrypt message

This is a way to digitally sign a
document!

I like
bananas

(g

Signing documents

Confiréed: batman likes bananas

I like
bananas

S

aBossaw jdAnsp

send signed message

I like
bananas

encrypt message

(o g

12

3/24/16

Signing documents

Confirmed: batman likes bananas

I like
bananas

abpssaw ud,(,nsp

send signed message

I like
bananas

(g

encrypt message

Public key encryption

Share your public key with everyone

How does this happen?

Anything we have to be careful of?

13

