Tesla slashed Model S and X staff in recent layoffs A Spot of Grime on the North Dakota Music Scene Harden ignites The Garden for career-high 61 points Shocking moment man attacks family in fit of rage Trump Makes Rare Cave on State of the Union Speech Coca-Cola Nixes Super Bowl Ad After 11-Year Run Sanders: President isn't hung up on the wall Ronda Rousey gets animated in 'Mortal Kombat 11' Why JFK Went To Hell Pizzagate: Woods denied pizza during Torrey pro-am

Admin

Assignment advice

- □ test individual components of your regex first, then put them all together
- write test cases

Assignment deadlines posted

Class participation

Why probability?

Prostitutes Appeal to Pope

Language is ambiguous

Probability theory gives us a tool to model this ambiguity in reasonable ways.

Basic Probability Theory: terminology

An **experiment** has a set of potential outcomes, e.g., throw a dice, "look at" another sentence

The sample space of an experiment is the set of all possible outcomes, e.g., $\{1, 2, 3, 4, 5, 6\}$

In NLP our sample spaces tend to be very large

- □ All words, bigrams, 5-grams
- All sentences of length 20 (given a finite vocabulary)
- All sentences
- □ All parse trees over a given sentence

Basic Probability Theory: terminology

An **event** is a subset of the sample space

Dice rolls

- {2}
- {3, 6}
- □ even = {2, 4, 6}
- odd = $\{1, 3, 5\}$

NLP

- a particular word/part of speech occurring in a sentence
- a particular topic discussed (politics, sports)
- sentence with a parasitic gap
- pick your favorite phenomena...

Events

We're interested in probabilities of events

- **□** p({2})
- p(even)
- p(odd)
- □ p(parasitic gap)
- p(first word in a sentence is "banana")

Random variables

A random variable is a mapping from the sample space to a number (think events)

It represents all the possible values of something we want to measure in an experiment

For example, random variable, \boldsymbol{X} , could be the number of heads for a coin tossed three times

space	ннн	HHT	HTH	HTT	THH	THT	TTH	TTT
X	3	2	2	1	2	1	1	0

Really for notational convenience, since the event space can sometimes be irregular $\,$

 $P(x) = \sum_{y \in Y} p(x, y)$

Called "marginalization", aka summing over a variable

NLPPass, EngPass	P(NLPPass, EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

Conditional probability

As we learn more information, we can update our probability distribution

P(X | Y) models this (read "probability of X given Y")

- What is the probability of heads given that both sides of the coin are heads?
- What is the probability the document is about politics, **given** that it contains the word "Clinton"?
- What is the probability of the word "banana" given that the sentence also contains the word "split"?

Notice that it is still a distribution over the values of X

Conditional probability

$$p(X \mid Y) = ?$$

In terms of pior and joint distributions, what is the conditional probability distribution?

Conditional probability

 $p(X \mid Y) = \frac{P(X,Y)}{P(Y)}$

Given that y has happened, in what proportion of those events does x also happen

Properties of probabilities

$$P(A \text{ or } B) = P(A) + P(B) - P(A,B)$$

Properties of probabilities

$$P(\neg E) = 1 - P(E)$$

More generally:

□ Given events $E = e_1, e_2, ..., e_n$

$$p(e_i) = 1 - \sum_{j=1:n, j \neq i} p(e_j)$$

 $P(E1, E2) \leq P(E1)$

Chain rule (aka product rule)

$$p(X \mid Y) = \frac{P(X,Y)}{P(Y)} \qquad \boxed{\qquad} p(X,Y) = P(X \mid Y)P(Y)$$

We can view calculating the probability of X AND Y occurring as two steps:

- 1. Y occurs with some probability P(Y)
- 2. Then, X occurs, given that Y has occured

or you can just trust the math... ©

Chain rule

 $p(X,Y,Z) = P(X \mid Y,Z)P(Y,Z)$

 $p(X,Y,Z) = P(X,Y \mid Z)P(Z)$

 $p(X,Y,Z) = P(X \mid Y,Z)P(Y \mid Z)P(Z)$

 $p(X,Y,Z) = P(Y,Z \mid X)P(X)$

$$p(X_1, X_2, ..., X_n) = ?$$

Applications of the chain rule

We saw that we could calculate the individual prior probabilities using the joint distribution

$$p(x) = \sum_{y \in Y} p(x, y)$$

What if we don't have the joint distribution, but do have conditional probability information:

- P(Y)
- P(X | Y)

$$p(x) = \sum_{y \in Y} p(y) p(x \mid y)$$

Bayes' rule (theorem)

$$p(X \mid Y) = \frac{P(X,Y)}{P(Y)} \qquad \qquad p(X,Y) = P(X \mid Y)P(Y)$$

$$p(Y \mid X) = \frac{P(X,Y)}{P(X)} \qquad \qquad p(X,Y) = P(Y \mid X)P(X)$$

$$p(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

Bayes rule

Allows us to talk about P(Y | X) rather than P(X | Y)

Sometimes this can be more intuitive

Why?

$$p(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

Bayes rule

p(disease | symptoms)

How would you estimate this?

Find a bunch of people with those symptoms and see how many have the disease

Is this feasible?

Parasitic gaps

These I'll put ____ away without folding ___ . __ gap

1. Cannot exist by themselves (parasitic)

These I'll put my pants away without folding ___ . __ gap

2. They're optional

These I'll put ____ away without folding them. ___ gap

Parasitic gaps

http://literalminded.wordpress.com/2009/02/10/do
ugs-parasitic-gap/

Frequency of parasitic gaps

Parasitic gaps occur on average in 1/100,000 sentences

Problem:

Laura Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually is?

Prob of parasitic gaps

Laura Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?

G = gapT = test positive

What question do we want to ask?

Prob of parasitic gaps

Laura Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?

G = gapT = test positive

 $p(g \mid t) = ?$

Prob of parasitic gaps

Laura Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?

G = gapT = test positive

$$p(g \mid t) = \frac{p(t \mid g)p(g)}{p(t)}$$

$$= \frac{p(t \mid g)p(g)}{\sum p(g)p(t \mid g)} = \frac{p(t \mid g)p(g)}{p(g)p(t \mid g) + p(\overline{g})p(t \mid \overline{g})}$$

Prob of parasitic gaps

Laura Linguist has developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?

$$p(g \mid t) = \frac{p(t \mid g)p(g)}{p(g)p(t \mid g) + p(\overline{g})p(t \mid \overline{g})}$$

$$= \frac{0.95 * 0.00001}{0.00001 * 0.95 + 0.99999 * 0.005} \approx 0.002$$