

Solving Homogeneous Reinforcement
Learning Problems with a Multi-Agent

Approach

David Kauchak

Department of Computer Science
UC San Diego

La Jolla, CA 92093-0114
dkauchak@cs.ucsd.edu

Abstract

In this paper we examine reinforcement learning problems which
consist of a set of homogeneous entities. These problems tend to
have extremely large state spaces making standard approaches
unattractive. We study lane change selection in a car traffic control
problem as an example of such a problem. We show how a single
agent problem can be translated into an approximating multi-agent
problem. We provide learning results in a traffic simulator using
this multi-agent approximation with Q-learning and R-learning.
Learning in the multi-agent problem proceeds quickly and
outperforms heuristic methods. Experimental results show that
learned methods perform better than heuristic methods as traffic
densities increase towards rush hour conditions. We summarize
the translation method used from a single agent problem to a
related multi-agent problem for car traffic control and propose this
as a starting place for related problems.

1 Intro duct io n

Reinforcement learning (RL) methods have been used to solve many problems
where supervised methods are not appropriate. In many of these domains, the
environment is too complicated to generate data for standard supervised methods.
With reinforcement learning, an agent explores its environment, receiving a reward
signal as it explores, and tries to optimize the sum of these rewards. There are many
real world problems that can be formulated as reinforcement learning problems, but
cannot be solved by current methods. In some situations, the problem may be too
complicated for learning to converge in a reasonable amount of time. In other
situations, restrictions posed by the learning setup make the methods inappropriate
for practical use. In this paper we examine one such subset of RL problems, and
propose a possible solution that uses previous learning methods, but modifies the
problem setup. For an overview of RL methods and example applications, see
Sutton and Barto (1998).

Not all single agent problems can be translated to multi-agent problems. Problems
that are suitable contain an omnipotent agent that is controlling the behavior of a

number of similar entities. Examples of this include car traffic control, packet
routing and game playing. In these domains the most intuitive rewards concern all
of the entities. However, optimizing a system with tens of thousands of cars,
routers or other entities is burdensome for current RL methods. In this paper, we
propose a methodology to find solutions that approximate the optimal solutions that
would be found if the original, single agent problem were solved. We provide
experimental results for one example domain, car traffic control.

2 Learning Lane Changing Strategies

For the rest of the paper, we will examine car traffic control as an example of a
reducible single agent problem. Reinforcement learning algorithms require three
components to be defined: the set of states S, the set of actions A and the reward
function R(s,a), where s � S and a � A. In this section, we define a straightforward
single agent setup to the car traffic control problem. We identify problems with this
setup and show how the single agent problem can be reduced to a multi-agent
problem.

2 .1 The S ing le Ag ent Se tup

Before we investigate the multi-agent problem, we will first outline the idealized
single agent case that we are attempting to approximate. The idealized version of
the problem trains a single omnipotent agent. This agent controls the lane changing
of all the cars. Each state s � S consists of the positions of all the cars in the system,
all cars’ desired speeds and all cars’ actual speeds. The actions a � A consist of a
lane choice for each car. The reward function, R(s,a) is the negative mean squared
difference between a car’s desired and actual speeds minus the number of lane
changes made. Specifically:

where x(d) is the desired speed of the car, and x(v) is the actual speed. Notice that
both of the parts of the reward function are over all cars. This reward function is
calculated at every time step of the system. The 25 in front of the lane changes
specifies how a lane change is valued versus the speed difference component. A
constant of 25 means that a lane change is not desired until the speed difference gets
over 5 mph. Note that the maximum reward possible for a state-action pair is zero
and occurs when no lane changes are made and all cars are going their desired
speeds.

Given this setup, any of the many standard reinforcement learning methods could be
applied to get a solution. Unfortunately, the setup described above has a number of
problems. If a small number of cars are to be modeled, then the state space may be

Figure 1: Example state of a single agent

�
�
�

�
�
�

−−−= �
∈ otherwise 0

lanes changed x if 1
*25))()((2

carsx

vxdxR

of a manageable size. If the goal is to model normal traffic on a freeway, however,
then the number of cars will be in the thousands. This large number of cars implies
that the state space will be extremely large. This has two ramifications. We may be
unable to represent the state space well because function approximators would have
to be used. Worse, however, training such a large state space would take a large
number of training runs. A more critical problem than the state space size is that the
state space must consist of a static number of cars, determined prior to learning. For
simulations this may be appropriate, however, for real world environments the
number of cars will be constantly changing. The combination of these factors
makes this setup unattractive.

2 .2 Appro xima t ing the Idea l i zed Pro blem

In this section we present an approximation to the idealized single agent setup. The
basic idea is to reduce a single omnipotent agent problem to a multi-agent problem
where each of the controllable entities in the single agent formulation becomes an
agent. States and actions are changed to represent the states and actions available to
one of these multi-agents. The main problem with this type of setup is that the
reward function can no longer be calculated from a state and an action, but must be
calculated from the states and actions of all the multi-agents. We provide a number
of possible ways in which a new reward function can be calculated.

2 .2 .1 Act io ns

We will follow the approach of Moriarty & Langley (1998) in which the actions are
whether to stay in the current lane, move left or move right (A = {move left, stay,
move right}). This set of actions provides a simplified action set and is
independent of the number of lanes in which the cars are traveling. With this
specification, the learning can be done with a different number of lanes than in the
testing environment.

2 .2 .2 S ta te s

One of the crucial decisions for reinforcement learning is the state definition. Since
this is a multi-agent system, the agent only has access to its surrounding
environment and has minimal communication with the other agents. This is quite
different from the single agent system that knows all the information about all the
cars.

2.2.2.1 A Previous Approach to State Representation

Before we discuss the representation used in this paper, we first discuss one
approach by Moriarty & Langley (1998) that we will improve upon. For the car
being controlled, the state contains both the current and desired speeds. For the
surrounding cars, the relative speeds and what type of lane changing policy is being
followed are included (a binary choice between the learned strategy and a greedy,
heuristic strategy). Except for the binary variables, all other variables are integers
over a range based upon physical conditions (approximately 50 possible values). To
simplify the state space, they chose to represent the location of the surrounding cars
not by a numerical value, but by defining eight locations surrounding the car that
could contain a car (front, rear, left, right, front right and left, and rear right and
left). Although this state space provides a good representation of an agent’s
environment, the state space size is on the order of 5010 * 28 = 2.5 * 1019 states.
This state space size has a number of consequences. Any state space this large must
use some sort of function approximator for the value function. Also, many states
will be visited infrequently, so some states will have to be inferred from similar

states. Although these consequences are not necessarily bad, we hypothesize that
this state representation is too detailed.

2.2.2.2 A More Concise State Representation

In this section we describe the state space used throughout the rest of the paper. We
make two modifications to the previous representation. First, we do not include
surrounding car types (greedy or learned). Although this information was useful for
their experimentation, it is not worth the blow up in state space size. Second,
Moriarty and Langley used integers to represent the other state variables. We
hypothesize that this representation is too specific. How much information does a
car gain by knowing that the car to its left is going 10 miles faster versus 11 miles
faster? In this paper, we reduce the set used to represent adjacent cars to four
values: faster, slower or equal to the car’s actual speed or empty. The motivation
for this choice was to minimize the set of possible values while still maintaining the
relevant information. Further research is needed to investigate other possible
choices, which could involve binning the relative speeds into speed ranges, such as
“between 0-5 miles faster,” etc.

As in Moriarty and Langley (1998), only the eight surrounding cars are used for
position in the state representation. This specification is informative, but still
concise. A surrounding space is considered empty if there is no car in that space
within 200 ft. (this was chosen as a reasonable value, but could be set based on
actual sensor performance).

Finally, instead of using both the desired speed and the actual speed of the car as
state variables, we only consider whether the car is traveling at its desired speed or
not1. The representation used in this paper is summarized in Figure 1. This
construction gives a state space of size 48 * 2 = 131,072 states, which is much
smaller than the previous size of 2.5 * 1019 states.

Before we move onto describing the reward function it is worth examining this
multi-agent state space size versus the idealized single agent state space. Consider
modeling a system with 1000 cars. This is still much smaller than real world
environments. Assume that the state space for the single agent consists of a
simplified state for each car similar to that just described. For 1000 cars, there will
be approximately (131,072)1000 � 105000 states. The multi-agent state space size is
independent of the number of cars, but the single agent state space grows
exponentially with the number of cars.

2 .2 .3 Rew a rd func t io n

The idealized, single agent reward function is in terms of all of the cars in the
system. The multi-agent state, however, only represents the environment of a single
car. We present two different methods for creating reward functions from the
reward function for the single agent system.

The first function, which we call the SingleCar reward function, uses only the
information directly available to one multi-agent and does not use information about
the other agents in the system. Specifically:

1 In the real world, a car could be going slower, faster or equal to the desired speed, but
the simulation design prevents a car from going faster than its desired speed.

�
�
�

�
�
�

−−−=
 otherwise 0

lanes changed x if 1
*25))()(()(2

1 vxdxxr

where, as above, x(d) is the desired speed and x(a) is the actual speed. This reward
function relates directly to the single agent reward function, R, as follows:

In the traffic problem, the reward function for the multi-agent problem can be
formulated similarly to the single agent problem, except that only the state of a
single car is used. In some situations, however, the single agent reward function is
not in a suitable form for this type of reduction. For example, if the single agent

reward function was the sum of the differences, squared, instead of the sum of the
squared differences.

We propose a second, general purpose, method for approximating the single agent
reward function in the multi-agent environment. The reward function is calculated
over all multi-agent states as if the problem were a single agent problem. This
results in a single number, which is the reward for the single agent state. That
single reward is given as the reward for all of the multi-agent states for that time
step. The advantage of this method is that it is applicable in any situation where a
single agent setup has been reduced to a multi-agent setup. The disadvantage is that
the reward function for the multi-agents becomes noisy. For the traffic problem, we
call this reward function AllCars.

2 .3 The Lea rn ing Alg o r i thms

Two different reinforcement learning algorithms are used: Q-learning (Watkins,
1989) and a variation of R-learning (Singh, 1994). Since the state space was
reduced in size and the problem is formulated as a multi-agent learning problem
where all the agents update the same function, a lookup table was used to represent
the value function. We chose to represent the value function as the action-value
function, Q(s,a), since a complete model of the environment is not readily available
to an agent; an agent does not know the locations of surrounding cars for the next
time step.

2 .3 .1 Q- lea rn ing

Q-learning is a standard reinforcement learning method that has proved successful
in a wide range of domains (Sutton & Barto, 1998 *** possibly a better citation).
We use the simplest version of Q-learning which is undiscounted, one-step Q-
learning. The Q-function is updated by the following rule:

()),(max),(*)1(),(111 1 ++∈+ +
+∗+−← ttAattttt asQrasQasQ

t
ββ

where rt+1 is the reward for taking action at in state st, � is the learning rate
parameter and),(max 111 ++∈+ ttAa asQ

t
 is the largest Q value over all possible next

actions at+1 from the next state st+1.

2 .3 .2 M o di f i ed R- lea rn ing

R-learning is a method for undiscounted, average reward reinforcement learning
problems. There are many domains where the task is cyclical, which results in
returns Rt (cumulative rewards) that may be unbounded. For traditional
reinforcement learning methods to work in these domains they are traditionally
discounted. Discounting forces rewards on the horizon to diminish, causing the
returns to converge. In many domains, such as this one, discounting future actions
does not make sense.

�
∈

=
carsx

xrR)(1

Average reward reinforcement learning methods generally work by estimating the
long term average of the system and updating the value function based on whether
the reward received is better or worse than the estimated average. For an overview
of undiscounted, average reward methods see Mahadevan (1996). R-learning is a
average reward RL where the action value function R(st, at) is learned (Schwartz,
1993). This R-function represents the average adjusted value of doing action at in
state st. We use a modified version of R-learning (Singh, 1994) where the estimated
average reward ��are�updated�as�follows:�

� ()tttAattttt asQrasRasR
t

ρββ −+∗+−← ++∈+ +
),(max),(*)1(),(111 1

�

�)(**)1(11 tttt r ραραρ −+−← ++ �

where�rt+1� is� the�reward�for� taking�action�at� in�state�st,��� is� the� learning�rate� for� the�
estimated� average� reward,� �� is� the� learning� rate� for� the� R-function� and��

),(max 111 ++∈+ ttAa asR
t

is�the�largest�R�value�over�all�possible�next�actions�at+1�from�
the�next�state�st+1.�

3� Experiments �

We� performed� two� sets� of� experiments� to� analyze� the� performance� of� the� learning�
methods.� �Four� learning�methods�were� tested� resulting� from� the�product� of� the� two�
learning� methods� (Q-learning� and�R-learning)� and� two� reward� functions� (SingleCar�
and�AllCars).��Two�heuristic�methods�similar�to�those�used�in�Moriarty�and�Langley�
(1998)�were�used�for�comparison�purposes.��A�greedy�car�changes�lanes�to�the�car�if�
the�car�in�front�of�it�is�going�slower�than�it�and�the�left�lane�is�empty.��If�the�left�lane�
is� not� empty,� but� the� right� lane� is� empty� then� it� will� change� right.� � A� polite� car�
implements� the� previous� two� rules,� but� also� changes� lanes� to� the� right� if� the� right�
lane�is�open�and�the�car�behind�it�is�going�faster�than�it.�

All� the� learning� methods� used� the� same� learning� parameters,� which� were� chosen�
based� on� values� used� by� other� authors:� �=.05� and� �=.5� (Sutton� &� Barto,� 1998;�
Mahadevan,� 1996).� � The� learning� agents� employ� an� �-greedy� decision� strategy�
where� the� greedy� action� is� chosen� with� probability� (1-� �),� otherwise� an� action� is�
chosen�randomly.����=.1�was�used�for�all�experiments.�

3 . 1 � Tra f f i c �S imula to r �Se t t ing s �

Since�learning�in�a�real�world�environment�is� infeasible,�a�simulator�was�used.� �The�
simulator� progresses� by� discrete� time� steps.� � Each� time� step� is� equivalent� to� one�
second.� � During� a� time� step,� all� the� cars�will�move� forward� and�may� change� lanes.��
Lane� changes� occur� in� a� single� time� step.� � This� short� lane� change� time� may� be�
unrealistic,� however,� difficulties� arise� in� trying� to� simulate� a� multi-time� step� lane�
change.�

�

All� cars� in� the� simulator� are� the� same� size,� 15� ft.� � This� is� a� common� size� for� a�
midsize�car.��The�simulator�consists�of�5�miles�of�one�way,�multilane�roadway.��The�
road� wraps� around� from� the� end� to� the� beginning� creating� an� infinite� length� of�
roadway.��The�desired�speed�of�the�cars�is�selected�from�a�gaussian�distribution�with�
mean�72�mph�and�standard�deviation�6.� �Given� this�distribution,�most�of� the�values�
should�be�between�66�mph�and�78�mph�with�almost�all�values�between�54�mph�and�
90� mph.� � These� values� appear� consistent� with� observed� freeway� driving� habits� of�
California�drivers.�

One� of� the� main� difficulties� in� creating� such� a� simulator� is� trying� to� model� real�
human�behavior�in�driving.��There�have�been�a�few�papers�that�have�attempted�to�do�
this� (Ehlert� &� Rothkrantz,� 2001;� Sukthankar� et.� al.,� 1997),� however,� implementing�
these�would�be�a� formidable� task.� �For�this�paper,�we�model�a�simplified�version�of�
normal�freeway�driving.��Future�work�will�investigate�more�sophisticated�models.�

Cars� accelerate� and� decelerate� with� two� simple� rules.� � Deceleration� occurs� at� 2�
mph/s.��Acceleration�is�inversely�dependent�on�the�car’ s�current�speed:�

� smph
v

vA /
10

)(= �

where�v� is� the�current�speed�of�the�car.��These�rules�were�also�used�in�Moriarty�and�
Langley� (1998).� � These� rules� are� not� intended� to� represent� the� maximum�
performance�of�a�car.� � Instead,� these�rules�attempt� to�model�actual�acceleration�and�

�

�
Figure�2:��Average�reward�for�the�four�learning�methods�and�two�heuristic�

methods�(3�lanes�on�top�and�4�lanes�on�bottom)�

�

deceleration� that� occurs� in� a� freeway� environment.� � Most� acceleration� on� the�
freeway� does� not� involve� the� maximum� acceleration� possible� by� a� car� and�
deceleration�often�involves�the�driver�removing�his/her�foot�from�the�gas�pedal.�

Safety� is� always� enforced� in� the� traffic� simulator.� � Although� this� is� unrealistic,�
dealing�with�collisions�and�other�related�problems�is�beyond�the�scope�of�this�paper.��
A� safe� distance� is� maintained� between� a� car� and� the� car� in� front� of� it.� � This� safe�
distance� is� the� distance� the� car� would� travel� in� one� second� based� on� the� current�
speed.��For�example,�if�a�car�is�going�70�mph,�it�will�maintain�a�safe�distance�of�103�
ft.�between� it�and� the�car� in� front�of�it.� �If�a�car�is�going�faster�than�the�car�in�front�
of�it,� then�there�must�also�be�enough�room�for�it�to�slow�down�to�the�same�speed�as�
the�car�in�front�of�it�while�still�maintaining�the�safe�distance.�

3 .2 � Lea rn ing �Per fo rma nce �

We� investigated� the� four� learning� algorithms� in�both� three� and� four� lane� roadways.��
Algorithms� learned� for�15,000� time�steps�with�one�car�every�200� feet� (396�cars� for�
three� lanes�and�528� for� four� lanes).� �Figure�2� shows� the� learning�curves� for�15,000�
time�steps.��Figure�2�shows�the�median�run�out�of�10�separate�runs.��

As�was�seen�in�Moriarty�and�Langley�(1998),�the�learning�methods�performed�better�
than� the� heuristic� methods� and� the� polite� method� performed� better� than� the� selfish�
method.��Surprisingly,�all�the�learning�methods�performed�similarly.��The�R-learning�
methods,�which�are�tailored�to�this�type�of�problem,�generally�performed�worse�than�
the� Q-learning� methods.� � The� single� car� reward� function� performed� better� than� the�
all�cars�reward�function.�

Learning� stabilizes� quickly� for� all� the� learning� methods.� � All� the� learning� methods�
have� reached� their� approximate� peak� value� by� 3,000� time� steps.� � There� are� two�
reasons� for� this.� � First,� all� the� cars� in� the� system�are� improving� the�value� function.��
After�3,000�time�steps,�3,000�*�396�=�1,584,000�updates�have�occurred.��Second,�the�
reward� function� is�noisy�and� is�only�an�approximation�of� the� idealized� single�agent�
reward�function.�

We� also� tested� learning� performance� of� the� these� methods� for� the� same� number� of�
time� steps,� but� trained�with�6�different� sets�of� randomly�placed�cars� for�2,500� time�
steps�each.� �The� results�were� similar� to� the�continuous� learning�case,� except�all� the�

�
Figure�3:��Average�reward�per�car�for�the�six��

methods�as�car�density�increases�(3�lanes)�

�

learning� methods� performed� better� when� trained� on� the� 6� different� sets� (***�
numbers).�

3 .3 � Increa s ing �Tra f f i c �Dens i ty �

We�also�tested�the�robustness�of�the�methods�as�the�traffic�density�increased.��Under�
normal� traffic� conditions� (non-rush� hour),� traffic� congestion� is� not� much� of� a�
problem.� � Most� drivers� are� able� to� maintain� their� desired� speeds.� � However,� as�
traffic�density�increases�and�the�general�flow�of�traffic�begins�to�slow,�methods�that�
reduce� this� congestion� become� more� important.� � Moriarty� and� Langley� only� tested�
traffic� densities� as� high� as� 400� cars� per� 13.3� miles� over� 3� lanes.� � This� is�
approximately�one�car�every�500�feet.��That�is�only�10�cars�per�mile,�which�is�much�
less�dense�than�rush�hour�conditions.�

We�trained�the�four�learning�methods�on�a�3�lane�roadway�with�396�cars�for�30,000�
time�steps�with�6�different�random�car�configurations�(each�car�configuration�ran�for�
5,000� time�steps).� �After�learning,� the�value�function�is�kept�constant�and�is�used�to�
test� the� results� as� the� traffic� density� increased.� �The�methods�were� tested�on� traffic�
densities�ranging�from�100�cars�to�1200�cars�on�a�3�lane�roadway�5�miles�long.��The�
maximum�density�is�approximately�one�car�every�50�ft.��This�is�much�closer�to�rush�
hour� traffic� conditions� than� previous� experiments.� � Simulating� traffic� densities�
higher� than� this� was� not� useful� because� simulator� parameters� (i.e.� maintaining�
safety)� prevented� cars� from� switching� lanes� at� all.� � Each� method� was� tested� on� 25�
different� random�car� configurations� for� each� traffic� density� (100�–�1200)� for� 5,000�
time� steps� each.� � This� process� was� repeated� three� times,� each� time� learning� a� new�
value�function.��Figure�3�shows�the�average�results�from�these�experiments.�

As� we� saw� in� the� learning� curve� experiments,� all� the� learning� methods� perform�
similarly� (even� more� so� in� this� experiment).� � We� hypothesize� that� because� of� the�
noisiness� of� the� reward� function,� the� methods� are� learning� very� similar� value�
functions�in�the�long�run.��Further�experimentation�is�needed�to�confirm�this.�

As� hypothesized,� the� learning� methods� perform� better� as� the� traffic� density�
increases.� �For� low�densities,� the�performance�of�all� the�methods� is�similar.� �As� the�
density� increases,� the� learned� methods� gradually� perform� better� than� the� heuristic�
methods.� � This� is� particularly� remarkable� given� that� the� learning� methods� were�
trained�with�a�fixed�car�density�of�396�cars.�

4� Conclusions�and�Future�Work�

To� conclude,� we� give� an� overview� of� the� basic� procedure� used� for� the� car� traffic�
control� problem� for� translating� a� single� agent� problem� to� an� approximating� multi-
agent� problem.� � The� first� step� is� to� specify� these� components� for� the� single� agent�
problem.��Particular�emphasis�should�be�put�on�the�reward�function.��Next,�the�states�
S,� the� actions� A,� and� the� reward� function,� R,� must� be� reformulated� from� the�
perspective�of� the� smaller�entities� so�as� to� still�capture� the�basic� information�of� the�
single� agent� problem.� � Section� 4.2.2� provided� a� general� method� for� doing� this� for�
any� translation.� � Finally,� a� reinforcement� learning� method� must� be� selected� and�
applied� to� the� problem.� � Each� entity� is� treated� as� an� independent� agent,� but� all�
agents�update� the�same�value� function.� �This�setup�can�produce�sub-optimal� results�
with� respect� to� the� original� single� agent� problem.� � Further� research� is� required� to�
bound�this�sub-optimality.�

We�examined�car�traffic�control�and�showed�that�learning�methods�performed�better�
than� heuristic� methods� even� without� tuning� learning� parameters.� � Future� work� will�
target� other� domains,� particularly� domains� where� solutions� using� single� agent� are�

�

already� known.� � This� will� provide� a� baseline� to� examine� what� the� performance�
sacrifice�is�by�reducing�the�problem�to�a�multi-agent�problem.�

We� attempted� to� model� real� traffic� conditions� and� drivers� in� the� simulator�
developed.� � However,� the� simulator� used� for� experiments� is� still� a� long� way� from�
real�life�conditions.��Experimentation�in�a�more�realistic�environment�would�provide�
stronger�motivation�for�implementing�this�type�of�system�in�real�life.�

Acknowledgements�

Thanks� to� my� machine� learning� classmates� for� their� initial� ideas� and� contributions�
and�thanks�to�Charles�Elkan�for�his�guidance�and�analysis.�

References �

Ehlert,� P.� &� Rothkrantz,� L.� (2001).� � A� Reactive� Driving� Agent� For� Microscopic�
Traffic�Simulation.�

Mahadevan,� S.� (1996).� Average� Reward� Reinforcement� Learning:� Foundations,�
Algorithms,� and� Empirical� Results.� Machine� Learning,� Special� Issue� on�
Reinforcement�Learning�(edited�by�Leslie�Kaebling),�vol.�22,�pages�159-196.�

Moriarty,�D.,�&�Langley,�P.�(1998).�Distributed�learning�of�lane-selection�strategies�
for� traffic� management� (Technical� Report� 98-2).� Daimler-Benz� Research� &�
Technology�Center,�Palo�Alto,�CA.�

Schwartz,� A.� (1993).� � A� Reinforcement� Learning� Method� for� Maximizing�
Undiscounted� Rewards.� � Proceedings� of� the� Tenth� Nation� Conference� on� Machine�
Learning,�pages�298-305.�

Singh,� S.� (1994).� � Reinforcement� Learning� Algorithms� for� Average-Payoff�
Markovian�Decision�Processes.�Proceedings�of� the�Twelfth�National�Conference�on�
Artificial�Intelligence.�

Sukthankar,�R.,�Baluja,�S.,�&�Hancock,�J.�(1997).�Evolving�an�intelligent�vehicle�for�
tactical� reasoning� in� traffic.� Proceedings� of� the� IEEE� International� Conference� on�
Robotics�and�Automation.�

Sutton,�R.�S.�&�Barto,�A.�(1998).� �Reinforcement�Learning:� �An�Introduction.� �MIT�
Press,�Cambridge,�MA.�

Watkins,� C.� (1989).� Learning� from� Delayed� Rewards.� PhD� thesis,� Cambridge�
University,�Cambridge,�England.�

