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Abstract

In this paper we examine reinforcement learning problems which
consist of a set of homogeneous entities. These problems tend to
have extremely large state spaces making standard approaches
unattractive. We study lane change selection in a car traffic control
problem as an example of such a problem. We show how a single
agent problem can be translated into an approximating multi-agent
problem. We provide learning results in a traffic simulator using
this multi-agent approximation with Q-learning and R-learning.
Learning in the multi-agent problem proceeds quickly and
outperforms heuristic methods. Experimental results show that
learned methods perform better than heuristic methods as traffic
densities increase towards rush hour conditions. We summarize
the translation method used from a single agent problem to a
related multi-agent problem for car traffic control and propose this
as a starting place for related problems.

1 Introduction

Reinforcement learning (RL) methods have been used to solve many problems
where supervised methods are not appropriate. In many of these domains, the
environment is too complicated to generate data for standard supervised methods.
With reinforcement learning, an agent explores its environment, receiving a reward
signal as it explores, and tries to optimize the sum of these rewards. There are many
real world problems that can be formulated as reinforcement learning problems, but
cannot be solved by current methods. In some situations, the problem may be too
complicated for learning to converge in a reasonable amount of time. In other
situations, restrictions posed by the learning setup make the methods inappropriate
for practical use. In this paper we examine one such subset of RL problems, and
propose a possible solution that uses previous learning methods, but modifies the
problem setup. For an overview of RL methods and example applications, see
Sutton and Barto (1998).

Not all single agent problems can be translated to multi-agent problems. Problems
that are suitable contain an omnipotent agent that is controlling the behavior of a
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Figure 1: Example state of a single agent

number of similar entities. Examples of this include car traffic control, packet
routing and game playing. In these domains the most intuitive rewards concern all
of the entities. However, optimizing a system with tens of thousands of cars,
routers or other entities is burdensome for current RL methods. In this paper, we
propose a methodology to find solutions that approximate the optimal solutions that
would be found if the original, single agent problem were solved. We provide
experimental results for one example domain, car traffic control.

2 Learning Lane Changing Strategies

For the rest of the paper, we will examine car traffic control as an example of a
reducible single agent problem. Reinforcement learning algorithms require three
components to be defined: the set of states S, the set of actions A and the reward
function R(s,a), where s € S and a € A. In this section, we define a straightforward
single agent setup to the car traffic control problem. We identify problems with this
setup and show how the single agent problem can be reduced to a multi-agent
problem.

2.1 The Single Agent Setup

Before we investigate the multi-agent problem, we will first outline the idealized
single agent case that we are attempting to approximate. The idealized version of
the problem trains a single omnipotent agent. This agent controls the lane changing
of all the cars. Each state s € S consists of the positions of all the cars in the system,
all cars’ desired speeds and all cars’ actual speeds. The actions a € A consist of a
lane choice for each car. The reward function, R(s,a) is the negative mean squared
difference between a car’s desired and actual speeds minus the number of lane
changes made. Specifically:

I if x changed 1
R=— Y (x(d)—x(v)? —25%] = " OHNEEHIE

xecars

0 otherwise

where x(d) is the desired speed of the car, and x(v) is the actual speed. Notice that
both of the parts of the reward function are over all cars. This reward function is
calculated at every time step of the system. The 25 in front of the lane changes
specifies how a lane change is valued versus the speed difference component. A
constant of 25 means that a lane change is not desired until the speed difference gets
over 5 mph. Note that the maximum reward possible for a state-action pair is zero
and occurs when no lane changes are made and all cars are going their desired
speeds.

Given this setup, any of the many standard reinforcement learning methods could be
applied to get a solution. Unfortunately, the setup described above has a number of
problems. If a small number of cars are to be modeled, then the state space may be



of a manageable size. If the goal is to model normal traffic on a freeway, however,
then the number of cars will be in the thousands. This large number of cars implies
that the state space will be extremely large. This has two ramifications. We may be
unable to represent the state space well because function approximators would have
to be used. Worse, however, training such a large state space would take a large
number of training runs. A more critical problem than the state space size is that the
state space must consist of a static number of cars, determined prior to learning. For
simulations this may be appropriate, however, for real world environments the
number of cars will be constantly changing. The combination of these factors
makes this setup unattractive.

2.2 Approximating the Idealized Problem

In this section we present an approximation to the idealized single agent setup. The
basic idea is to reduce a single omnipotent agent problem to a multi-agent problem
where each of the controllable entities in the single agent formulation becomes an
agent. States and actions are changed to represent the states and actions available to
one of these multi-agents. The main problem with this type of setup is that the
reward function can no longer be calculated from a state and an action, but must be
calculated from the states and actions of all the multi-agents. We provide a number
of possible ways in which a new reward function can be calculated.

2.2.1 Actions

We will follow the approach of Moriarty & Langley (1998) in which the actions are
whether to stay in the current lane, move left or move right (A = {move left, stay,
move right}). This set of actions provides a simplified action set and is
independent of the number of lanes in which the cars are traveling. With this
specification, the learning can be done with a different number of lanes than in the
testing environment.

2.2.2 States

One of the crucial decisions for reinforcement learning is the state definition. Since
this is a multi-agent system, the agent only has access to its surrounding
environment and has minimal communication with the other agents. This is quite
different from the single agent system that knows all the information about all the
cars.

2.2.2.1 A Previous Approach to State Representation

Before we discuss the representation used in this paper, we first discuss one
approach by Moriarty & Langley (1998) that we will improve upon. For the car
being controlled, the state contains both the current and desired speeds. For the
surrounding cars, the relative speeds and what type of lane changing policy is being
followed are included (a binary choice between the learned strategy and a greedy,
heuristic strategy). Except for the binary variables, all other variables are integers
over a range based upon physical conditions (approximately 50 possible values). To
simplify the state space, they chose to represent the location of the surrounding cars
not by a numerical value, but by defining eight locations surrounding the car that
could contain a car (front, rear, left, right, front right and left, and rear right and
left). Although this state space provides a good re]i)resentation of an agent’s
environment, the state space size is on the order of 50" * 2° = 2.5 * 10" states.
This state space size has a number of consequences. Any state space this large must
use some sort of function approximator for the value function. Also, many states
will be visited infrequently, so some states will have to be inferred from similar



states. Although these consequences are not necessarily bad, we hypothesize that
this state representation is too detailed.

2.2.2.2 A More Concise State Representation

In this section we describe the state space used throughout the rest of the paper. We
make two modifications to the previous representation. First, we do not include
surrounding car types (greedy or learned). Although this information was useful for
their experimentation, it is not worth the blow up in state space size. Second,
Moriarty and Langley used integers to represent the other state variables. We
hypothesize that this representation is too specific. How much information does a
car gain by knowing that the car to its left is going 10 miles faster versus 11 miles
faster? In this paper, we reduce the set used to represent adjacent cars to four
values: faster, slower or equal to the car’s actual speed or empty. The motivation
for this choice was to minimize the set of possible values while still maintaining the
relevant information. Further research is needed to investigate other possible
choices, which could involve binning the relative speeds into speed ranges, such as
“between 0-5 miles faster,” etc.

As in Moriarty and Langley (1998), only the eight surrounding cars are used for
position in the state representation. This specification is informative, but still
concise. A surrounding space is considered empty if there is no car in that space
within 200 ft. (this was chosen as a reasonable value, but could be set based on
actual sensor performance).

Finally, instead of using both the desired speed and the actual speed of the car as
state variables, we only consider whether the car is traveling at its desired speed or
not'. The representation used in this paper is summarized in Figure 1. This
construction gives a state space of size 4° * 2 = 131,072 states, which is much
smaller than the previous size of 2.5 * 10" states.

Before we move onto describing the reward function it is worth examining this
multi-agent state space size versus the idealized single agent state space. Consider
modeling a system with 1000 cars. This is still much smaller than real world
environments. Assume that the state space for the single agent consists of a
simplified state for each car similar to that just described. For 1000 cars, there will
be approximately (131,072)'°° =~ 10°° states. The multi-agent state space size is
independent of the number of cars, but the single agent state space grows
exponentially with the number of cars.

2.2.3 Reward function

The idealized, single agent reward function is in terms of all of the cars in the
system. The multi-agent state, however, only represents the environment of a single
car. We present two different methods for creating reward functions from the
reward function for the single agent system.

The first function, which we call the SingleCar reward function, uses only the
information directly available to one multi-agent and does not use information about
the other agents in the system. Specifically:

5 1 if x changed lanes
r(x) ==(x(d) = x(v))” =25% :
0 otherwise

" In the real world, a car could be going slower, faster or equal to the desired speed, but
the simulation design prevents a car from going faster than its desired speed.



where, as above, x(d) is the desired speed and x(a) is the actual speed. This reward
function relates directly to the single agent reward function, R, as follows:

In the traffic problem, the reward function for the multi-agent problem can be
formulated similarly to the single agent problem, except that only the state of a
single car is used. In some situations, however, the single agent reward function is
not in a suitable form for this type of reduction. For example, if the single agent

R= 3 r(x)
xecars
reward function was the sum of the differences, squared, instead of the sum of the
squared differences.

We propose a second, general purpose, method for approximating the single agent
reward function in the multi-agent environment. The reward function is calculated
over all multi-agent states as if the problem were a single agent problem. This
results in a single number, which is the reward for the single agent state. That
single reward is given as the reward for all of the multi-agent states for that time
step. The advantage of this method is that it is applicable in any situation where a
single agent setup has been reduced to a multi-agent setup. The disadvantage is that
the reward function for the multi-agents becomes noisy. For the traffic problem, we
call this reward function AllCars.

2.3 The Learning Algorithms

Two different reinforcement learning algorithms are used: Q-learning (Watkins,
1989) and a variation of R-learning (Singh, 1994). Since the state space was
reduced in size and the problem is formulated as a multi-agent learning problem
where all the agents update the same function, a lookup table was used to represent
the value function. We chose to represent the value function as the action-value
function, Q(s,a), since a complete model of the environment is not readily available
to an agent; an agent does not know the locations of surrounding cars for the next
time step.

2.3.1 Q-learning

Q-learning is a standard reinforcement learning method that has proved successful
in a wide range of domains (Sutton & Barto, 1998 *** possibly a better citation).
We use the simplest version of Q-learning which is undiscounted, one-step Q-
learning. The Q-function is updated by the following rule:

0(s,,a,) < (1= B)* O(s,,a) + B+ 1, +max, _, OGs,.1.a,,))

where r,.; is the reward for taking action a, in state s, S is the learning rate
parameter and max, _, 0(s,,,,q,,,) is the largest Q value over all possible next

actions a,,; from the next state s,, ;.

2.3.2 Modified R-learning

R-learning is a method for undiscounted, average reward reinforcement learning
problems. There are many domains where the task is cyclical, which results in
returns R; (cumulative rewards) that may be unbounded. For traditional
reinforcement learning methods to work in these domains they are traditionally
discounted. Discounting forces rewards on the horizon to diminish, causing the
returns to converge. In many domains, such as this one, discounting future actions
does not make sense.



Average reward reinforcement learning methods generally work by estimating the
long term average of the system and updating the value function based on whether
the reward received is better or worse than the estimated average. For an overview
of undiscounted, average reward methods see Mahadevan (1996). R-learning is a
average reward RL where the action value function R(s, a) is learned (Schwartz,
1993). This R-function represents the average adjusted value of doing action a; in
state s;. We use a modified version of R-learning (Singh, 1994) where the estimated
average reward p are updated as follows:

R(st’at) — (1_ﬂ) *R(st’at)+ ﬁ g (’}+1 + l’l’laXaH]EA Q(St+1’at+1) _pt)

P € (]‘_a’/)*pt +a*(rt+1 _pz)
where r.,; is the reward for taking action a, in state s;, a is the learning rate for the
estimated average reward, /£ is the learning rate for the R-function and
max, _, R(s
the next state s, ;.

z+1’az+1) is the largest R value over all possible next actions a,,; from

3 Experiments

We performed two sets of experiments to analyze the performance of the learning
methods. Four learning methods were tested resulting from the product of the two
learning methods (Q-learning and R-learning) and two reward functions (SingleCar
and AllCars). Two heuristic methods similar to those used in Moriarty and Langley
(1998) were used for comparison purposes. A greedy car changes lanes to the car if
the car in front of it is going slower than it and the left lane is empty. If the left lane
is not empty, but the right lane is empty then it will change right. A polite car
implements the previous two rules, but also changes lanes to the right if the right
lane is open and the car behind it is going faster than it.

All the learning methods used the same learning parameters, which were chosen
based on values used by other authors: @=.05 and PB=.5 (Sutton & Barto, 1998;
Mahadevan, 1996). The learning agents employ an e-greedy decision strategy
where the greedy action is chosen with probability (1- €), otherwise an action is
chosen randomly. € =.1 was used for all experiments.

3.1 Traffic Simulator Settings

Since learning in a real world environment is infeasible, a simulator was used. The
simulator progresses by discrete time steps. Each time step is equivalent to one
second. During a time step, all the cars will move forward and may change lanes.
Lane changes occur in a single time step. This short lane change time may be
unrealistic, however, difficulties arise in trying to simulate a multi-time step lane
change.
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Figure 2: Average reward for the four learning methods and two heuristic
methods (3 lanes on top and 4 lanes on bottom)

All cars in the simulator are the same size, 15 ft. This is a common size for a
midsize car. The simulator consists of 5 miles of one way, multilane roadway. The
road wraps around from the end to the beginning creating an infinite length of
roadway. The desired speed of the cars is selected from a gaussian distribution with
mean 72 mph and standard deviation 6. Given this distribution, most of the values
should be between 66 mph and 78 mph with almost all values between 54 mph and
90 mph. These values appear consistent with observed freeway driving habits of
California drivers.

One of the main difficulties in creating such a simulator is trying to model real
human behavior in driving. There have been a few papers that have attempted to do
this (Ehlert & Rothkrantz, 2001; Sukthankar et. al., 1997), however, implementing
these would be a formidable task. For this paper, we model a simplified version of
normal freeway driving. Future work will investigate more sophisticated models.

Cars accelerate and decelerate with two simple rules. Deceleration occurs at 2
mph/s. Acceleration is inversely dependent on the car’s current speed:

AW) = %mph /s
v

where v is the current speed of the car. These rules were also used in Moriarty and
Langley (1998). These rules are not intended to represent the maximum
performance of a car. Instead, these rules attempt to model actual acceleration and
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deceleration that occurs in a freeway environment. Most acceleration on the
freeway does not involve the maximum acceleration possible by a car and
deceleration often involves the driver removing his/her foot from the gas pedal.

Safety is always enforced in the traffic simulator. Although this is unrealistic,
dealing with collisions and other related problems is beyond the scope of this paper.
A safe distance is maintained between a car and the car in front of it. This safe
distance is the distance the car would travel in one second based on the current
speed. For example, if a car is going 70 mph, it will maintain a safe distance of 103
ft. between it and the car in front of it. If a car is going faster than the car in front
of it, then there must also be enough room for it to slow down to the same speed as
the car in front of it while still maintaining the safe distance.

3.2 Learning Performance

We investigated the four learning algorithms in both three and four lane roadways.
Algorithms learned for 15,000 time steps with one car every 200 feet (396 cars for
three lanes and 528 for four lanes). Figure 2 shows the learning curves for 15,000
time steps. Figure 2 shows the median run out of 10 separate runs.

As was seen in Moriarty and Langley (1998), the learning methods performed better
than the heuristic methods and the polite method performed better than the selfish
method. Surprisingly, all the learning methods performed similarly. The R-learning
methods, which are tailored to this type of problem, generally performed worse than
the Q-learning methods. The single car reward function performed better than the
all cars reward function.

Learning stabilizes quickly for all the learning methods. All the learning methods
have reached their approximate peak value by 3,000 time steps. There are two
reasons for this. First, all the cars in the system are improving the value function.
After 3,000 time steps, 3,000 * 396 = 1,584,000 updates have occurred. Second, the
reward function is noisy and is only an approximation of the idealized single agent
reward function.

We also tested learning performance of the these methods for the same number of
time steps, but trained with 6 different sets of randomly placed cars for 2,500 time
steps each. The results were similar to the continuous learning case, except all the



learning methods performed better when trained on the 6 different sets (***
numbers).

3.3 Increasing Traffic Density

We also tested the robustness of the methods as the traffic density increased. Under
normal traffic conditions (non-rush hour), traffic congestion is not much of a
problem. Most drivers are able to maintain their desired speeds. However, as
traffic density increases and the general flow of traffic begins to slow, methods that
reduce this congestion become more important. Moriarty and Langley only tested
traffic densities as high as 400 cars per 13.3 miles over 3 lanes. This is
approximately one car every 500 feet. That is only 10 cars per mile, which is much
less dense than rush hour conditions.

We trained the four learning methods on a 3 lane roadway with 396 cars for 30,000
time steps with 6 different random car configurations (each car configuration ran for
5,000 time steps). After learning, the value function is kept constant and is used to
test the results as the traffic density increased. The methods were tested on traffic
densities ranging from 100 cars to 1200 cars on a 3 lane roadway 5 miles long. The
maximum density is approximately one car every 50 ft. This is much closer to rush
hour traffic conditions than previous experiments. Simulating traffic densities
higher than this was not useful because simulator parameters (i.e. maintaining
safety) prevented cars from switching lanes at all. Each method was tested on 25
different random car configurations for each traffic density (100 — 1200) for 5,000
time steps each. This process was repeated three times, each time learning a new
value function. Figure 3 shows the average results from these experiments.

As we saw in the learning curve experiments, all the learning methods perform
similarly (even more so in this experiment). We hypothesize that because of the
noisiness of the reward function, the methods are learning very similar value
functions in the long run. Further experimentation is needed to confirm this.

As hypothesized, the learning methods perform better as the traffic density
increases. For low densities, the performance of all the methods is similar. As the
density increases, the learned methods gradually perform better than the heuristic
methods. This is particularly remarkable given that the learning methods were
trained with a fixed car density of 396 cars.

4 Conclusions and Future Work

To conclude, we give an overview of the basic procedure used for the car traffic
control problem for translating a single agent problem to an approximating multi-
agent problem. The first step is to specify these components for the single agent
problem. Particular emphasis should be put on the reward function. Next, the states
S, the actions A, and the reward function, R, must be reformulated from the
perspective of the smaller entities so as to still capture the basic information of the
single agent problem. Section 4.2.2 provided a general method for doing this for
any translation. Finally, a reinforcement learning method must be selected and
applied to the problem. Each entity is treated as an independent agent, but all
agents update the same value function. This setup can produce sub-optimal results
with respect to the original single agent problem. Further research is required to
bound this sub-optimality.

We examined car traffic control and showed that learning methods performed better
than heuristic methods even without tuning learning parameters. Future work will
target other domains, particularly domains where solutions using single agent are



already known. This will provide a baseline to examine what the performance
sacrifice is by reducing the problem to a multi-agent problem.

We attempted to model real traffic conditions and drivers in the simulator
developed. However, the simulator used for experiments is still a long way from
real life conditions. Experimentation in a more realistic environment would provide
stronger motivation for implementing this type of system in real life.
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